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Abstract

In this paper, we deal with the reuse of state machines for automatic test
case generation in the context of product lines. We consider a corresponding
approach of the Object Management Group and introduce our own approach to
reuse state machines. We use OCL expressions to automatically derive test suites.
All explanations are supported by the example of a car audio system.

1 Introduction

The primary goal of testing is to find as many errors in the system under test (SUT) as
possible with minimal effort. The quality of test suites is assessed by coverage criteria.
They are used to keep development and maintenance costs for testing at a reasonable
rate to the required safety level of the SUT. Since testing consumes a large amount of
the overall development costs, much effort is put into keeping costs for testing as low as
possible. The reuse of certain artefacts, e.g., test suites is of use to reduce development
costs and maintenance costs. In the field of model-based testing, the reuse of test models
also significantly contributes to reducing such costs. In this paper, we aim at reusing
test models. Assuming an automatic test generation process, a whole test suite can be
generated from a test model. This could lead to reduced costs of model-based testing.

A product line is a set of products with common, optional, and alternative features.
Feature models are used to relate the basic product and features. By reusing common
features, product lines provide an efficient way to reduce costs for various similar products.
Therefore, testing techniques for product lines should strive for the same goal.

In this paper, we present two ways to reuse state machines of the Unified Modeling
Language (UML) for test case generation: the one proposed by the Object Management
Group (OMG) and our own approach. We sketch advantages and disadvantages of both



approaches in the context of product line testing. Furthermore, we present a prototype
implementation for our approach of state machine reuse. The main contribution of this
paper is a technique to reuse test models in the context of product lines.

The paper is structured as follows. In the following section, we present related work.
In Section 3, we introduce our running example of a car audio system and a correspond-
ing product line. Afterwards, we discuss both approaches to reuse state machines. In
Section 5, we sketch the test generation process. We conclude this paper with a discus-
sion in Section 6 and a conclusion and an outlook to future work in Section 7.

2 Related Work

Model-based testing is extensively discussed in [3, 25]. Instances of the UML are of-
ten used as test models and as sources for automatic test case generation [4, 23]. For
instance, UML state machines are used by Offutt and Abdurazik to derive test cases
automatically [18]. In our approach, test cases are generated automatically from UML
models with special focus on inheritance as one part of object-orientation. El-Fakih
et al. [5] consider testing during product life cycle. They reduce the test effort by testing
only the modified elements of a new product version. In contrast, our approach allows
to test all products of a product line based on one behavioural test model. The automa-
tion of the test case creation reduces the effort for repeated test creation. However, a
combination of our approach with the approach of El-Fakih et al. seems to be reasonable.

Liskov [16] defines the substitution principle between types and subtypes. We apply
this approach by interpreting a state machine as a property of its context class. This
state machine can also be used to describe the behaviour of this class’ subclasses.

The Object Constraint Language (OCL) is used to constrain objects and models [22,
30]. Hamie et al. consider OCL in combination with state machines and classes [9]. We
apply our approach of transforming OCL expressions to generate test input partitions [28].

Partition testing and boundary testing are testing techniques that are focused on the
selection of test input values. Several approaches validate predefined boundaries [10, 13]
but do not provide means to derive these boundaries from test models. A prominent
approach is the classification tree method (CTM), which enables the tester to define
arbitrary partitions. Alekseev et al. [1] propose the reuse of classification tree models.
Gomaa [6] introduces the PLUS models and method. He uses Boolean feature conditions
to activate product line features. In contrast, our algorithm is not restricted to Boolean
values or complete activation of features, but is also able to adapt feature details.

Olimpiew and Gomaa [19] deal with test generation from product lines and sequence
diagrams. In contrast to that, we focus on UML state machines, OCL constraints, and
inheritance relationships. McGregor [17] points out the importance of a well-defined
process for testing software product lines. Kolb [12] discusses the problem of selecting a
suitable software product line testing strategy that takes the reuse of variable elements
into account. As an extension to that, we focus on the reuse of models for automatic
test generation to reduce test development costs. Pohl and Metzger [20] discuss the
advantages of software product line testing and emphasise the preservation of variability
in test artefacts. As we generate test cases from reused models automatically, this vari-
ability is preserved. Gomaa [7] also dealt with an architecture-centric evolution of product
lines in which he supports a model-driven approach to develop software product lines.



There are many commercial modelling tools that offer test support. Rhapsody
ATG [24] generates and executes test cases with respect to UML state machines. We
develop the tool Partition Test Generator (ParTeG) [27], which supports the automatic
generation of boundary tests. The tool LTG/UML from Leirios [15] generates test cases
from OCL expressions but is not focused on the reuse of test models.

3 Example: Product Lines for Car Audio Systems

A product line consists of products, e.g., software or hardware with essential similar
features. The dissimilar features are known as product variation points. Activating or
deactivating different variation points results in different product variants. For developing
and testing product lines, it is beneficial to deal with their similar features prior to
their dissimilar features. The application of product lines to software products results
in software product lines (SPLs), which are sets of similar software products. SPLs are
often considered in the context of model-based testing [17, 19].

Product lines are typically modelled with feature models. Each feature model contains
the features of a product line, their mutual relations, and their relations to the basic
product (cf. Figure 1). These relations describe the features as common, optional, or
alternative. Other relations between features describe, e.g., dependencies between single
features or dependencies inside of a group of features.

In the following, we present our running example: a car audio system. A car audio
system has several possible features, many of which are common to all product variants.
Therefore, the car audio system is appropriate for a description in a feature model.
Figure 1 shows a feature model with some reasonable features of a car audio system.

For instance, the basic controls are common to all radios: A radio must provide an
option to switch its mode, e.g., to toggle radio and playback media. It must allow the
selection of channels or titles, the change of the volume, and the search for new channels
or new titles. Depending on the current mode and received events (e.g., emergency
messages via the traffic message channel), the basic controls like forward and backward
search can have different meanings. Furthermore, the choice of playback media (CD or
cassette player) also influences the behaviour. Whereas a forward event for a cassette
player results in winding the tape, a forward event for a CD player results in the immediate
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Figure 1: Feature model of car audio systems.



selection of the next track. The traffic message channel is common to all car audio
systems. The availability of a USB port, the wheel control, and the navigation system
are optional features. Depending on the playback media, the update of map data for the
navigation system is an optional feature.

4 Using State Machines to Model Product Variants

State machines [8] are often used to model the behaviour of product variants. In our
context, they are used as test models to automatically generate test suites. There are
many ways to reuse these state machines as test models in order to reduce the costs for
test development and test maintenance.

The OMG proposes to generalize and specialize state machines for UML. Rationale
of this is to enable the redefinition of a general classifier’s behaviour. So, the OMG
defines a generalization relationship between UML state machines [8]: ”A specialized
state machine is an extension of the general state machine, in that regions, vertices, and
transitions may be added; regions and states may be redefined (extended: simple states to
composite states and composite states by adding states and transitions); and transitions
can be redefined.” Furthermore, the specification states: ”A submachine state may be
redefined. The submachine state machine may be replaced by another submachine state
machine, provided that it has the same entry/exit points as the redefined submachine
state machine, but it may add entry/exit points. Transitions can have their content and
target state replaced, while the source state and trigger are preserved.”

In principle, the specialized state machine is read similarly to ”non-specialized” state
machines. Interesting features can be added when it is necessary and, consequently,
agile development is supported. Nonetheless, some important problems are unsolved.
For instance, transitions can be redefined but there is no way to mark them as reused.
Consequently, all transitions have to be re-drawn in the specialized state machine. Fur-
thermore, the relations between the general and the specialized state machine are not
clarified. Submachine state machines, transitions, and regions can be replaced, added,
or redefined. Such changes can have significant effects on the whole state machine. The
effects of changes in the general state machine on the specialized state machines are also
undefined. To our knowledge, there is no tool support for this approach.

Our approach to reuse state machines leaves the state machine unchanged but
changes its context class. As specified in [8], the context of a state machine is a class;
transitions of the state machine can refer to properties and operations of this class via
events, guards, and effects. Instead of using an inheritance relationship between state
machines, we use the inheritance relationship between classes and reuse a state machine
as a behavioural description of these classes. For that, we define one state machine
for a general class. Since all specialized classes contain the same operations, attributes,
and associations, this state machine can also describe the behaviour a specialized class.
Another motivation for this approach is Liskov’s substitution principle [16]. This principle
states that all properties of a class also have to hold for its subclasses. Obviously, the
behaviour of a class is such a property. Since a state machine is the model of a class’
behaviour, it is also a model of a class’ property and can, thus, be a model for the be-
haviour of each subclass. Consequently, each subclass of the state machine’s originally
defined context class is a possible context class (see Figure 2).
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Figure 2: Each subclass of class SuperClass can be the context of the state machine.

In our approach, the default values of the referred properties and the pre-/postcon-
ditions of the operations in the selected context class influence the behaviour of the state
machine. Consequently, the behaviour described by the state machine depends on the
selected context class and the modelled behaviour changes with the selection of a new
context class. By using submachine states, the clarity of the test model is kept even for
large systems. Figure 3 shows a reusable state machine for our example - Figure 4 shows
the corresponding context classes. Note that our approach is not only feasible for testing
one class, but also for systems with many classes. For each product variant, each active
class is then described by a state machine.

This state machine describes a part of the car audio system’s complete behaviour.
Each car audio system is in one of two states: On or Off. The state On is a composite
state and contains two regions. The upper region deals with the common feature Switch
between sources of the current playback: Users can switch between several sources. A
TMCEvent is triggered if a traffic-relevant message is received. If the traffic message
control is activated (bTMCEnabled = true), then the input media will change to the
traffic channel. If the message broadcast is finished or the radio is turned off and on
again, then the radio is reset to the state SourceSelection. The lower region describes
some of the remaining common control features, like volume control or track control.
Both regions are handled in parallel. Depending on the state of the car audio system,
the effects of the events differ. For instance, if the radio receives a traffic message,
the volume is set to a higher value and the track control is disabled. Furthermore, the
handling of the features Forward and Backward depends on the current product variant
- e.g., immediate track selection for a CD or track search for a radio.
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Figure 3: A state machine describing an extract of the general car audio system behaviour.
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Figure 4: Extract of classes describing two product configurations for a car audio system.

5 Automatic Test Generation

In this section, we examine our automatic test generation process for product lines. In
order to derive tests for a product variant, a behavioural description of this variant is
required. For instance, Kishi and Noda [11] model one state machine for each feature-
supporting component. According to our own approach, we describe the behaviour of all
product variants with one state machine. This state machine describes the behaviour of
each product variant of the product line. We adapt Liskov’s substitution principle [16].
The corresponding configuration classes have to be derived from the feature model. One
way to do so is to identify all possible combinations of product features and create corre-
sponding configuration classes. There are certainly more ways to derive class hierarchies
from product lines. We discuss some of them in Section 6.

5.1 Test Case Generation Process

The behavioural description of each product variant is given as a state machine. This state
machine consists of regions with states and transitions that connect states. Furthermore,
the behaviour depends on guard conditions and the effects of transitions. The test
generation process evaluates all conditions along the transitions of a state machine [28].
These conditions include, e.g., guard conditions of transitions and pre-/postconditions of
the transitions’ effects. The elements of these conditions are categorised and subdivided
into dependent and independent variables - according to their dependency on former
behaviour (cp. [28]). By this, elements of guards and postconditions can be related to
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Figure 5: Basic idea of the test generation process.

each other. Using such relations, the effects of a postcondition on the satisfaction of a
guard can be detected. The corresponding algorithm is able to identify relations between
elements that are contained in inequations, logical disjunctions, and even negations (also
in postconditions). This exceeds the ability of other static analysis approaches to generate
test suites from OCL expressions. These are often restricted to the evaluation of equations
as expressions to change the value of a variable [15]. The main goal of this strategy is to
transform conditions concerning system attributes into conditions about input parameters
or constants. This results in test suites with concrete input values close to the partition
boundaries derived from transformed conditions (see Figure 5). Therefore, the generated
test suites satisfy boundary-based coverage criteria [14].

The sketched test generation approach works for one state machine and one context
class. Following Liskov, this approach also works for a pair of one state machine and
several classes from a class hierarchy (cf. Figure 2). These classes can be derived from
product lines. So, our approach is adequate to generate test suites for product lines.

5.2 Generating Test Suites for a Car Audio System

The feature model in Figure 1 contains 14 common, optional, and alternative features.
Common features are activated in each product variant. Optional and alternative features
reflect differences between product variants. The corresponding configuration classes for
our approach result from the combinations of activated optional and alternative features.
In the car audio system example, this leads to 26 product variants overall. Probably,
not all of these configurations are to be provided to customers. Consequently, fewer
configurations might be sufficient. Below, we focus on automatic test generation for the
two configurations shown in Figure 4.

ParTeG generates JUnit test suites for both configurations. Thus, the test suites
are executable without any further effort. ParTeG allows the user to choose a cover-
age criterion, which should be satisfied as good as possible by the generated test suite.
The test generation process is adapted to the selected coverage criterion. The current
version provides three well-known coverage criteria to choose from: State Coverage,
Decision Coverage, and Modified Condition / Decision Coverage.

6 Discussion

The presented approach supports the reuse of test models. Nevertheless, there are points
left to discuss. For instance, the relative completeness of pre-/postconditions significantly



influences the generated test input partitions based on OCL expressions. Due to the
success of random testing, the effectiveness of model-based testing needs discussions [21].
Additionally, the combination of several coverage criteria seems to be promising [29].

For our approach, there are several reasonable adaptations and extensions. For in-
stance, initial configurations can be expressed in object diagrams. Since names of test
model elements may differ from the used names of SUT elements, it may be necessary
to refactor the test models for each SUT or to adapt the resulting test suite in a sub-
sequent step. The use of just one state machine can also be discussed - especially for
distributed systems or distributed development processes: it would be possible to define
several active classes of the SUT and define one state machine for each active class.
Furthermore, the reuse of test models and the automatic test generation process indicate
that a reasonable amount of test effort can be saved by using the presented method.
Corresponding case studies have to be carried out.

Another important issue is the derivation of class hierarchies from product lines. Is it
possible to derive a class hierarchy similar to the hierarchy between features of a feature
model? For the example in Figure 1, it is possible to define a basic class with all optional
features deactivated. Therefore, two subclasses can be derived by activating the features
Wheel Control and Navigation System, each. The definition of a class that activates
boths features seems to be an issue. Since it is undesirable to derive every class directly
from the base class, the new class should inherit the classes defined for the features
Wheel Control and Navigation System. This leads to multiple inheritance, which has
some disadvantages connected to the overwriting of class operations. Such problems are
well known from C++. Another solution might be the use of aspect-orientation [26],
where each feature corresponds to a certain aspect.

An important point for a selected coverage criterion is the actual coverage of the
generated test suite. How many percent are sufficient? Andrews et al. [2] investigated
this question and discovered a particularly impressive gain in fault-detection in the last
10-20 percent. Consequently, the test process also has to search for the test cases that
satisfy the criterion completely. Since full coverage seems to be important, the number
of actually feasible test cases is interesting. Static analysis on the test model would be
helpful to determine the feasible elements of the coverage criterion.

7 Conclusions and Future Work

In this paper, we proposed the reuse of test models for automatic model-based test
generation. We defined an approach to reuse state machines for context classes from a
class hierarchy and compared it to the approach to specialize state machines proposed by
the OMG. In our approach, the differences between the product variants can be expressed
by pre-/postconditions or attribute values of context classes. We sketched how to use
ParTeG to generate corresponding test suites.

The main contribution of this paper is a new method to reuse state machines along
inheritance relationships between classes. Since class hierarchies can be derived from
product lines, our approach is particularly useful for product lines. We admit that the
modelling effort for a state machine describing all product line features exceeds the effort
for a state machine describing just one product variant. However, it requires considerably
less effort than modelling and maintaining an individual state machine for each product



variant of a product line, in particular, for large product lines with dozens of features.
Furthermore, the context classes of the state machine are tightly related to the feature
model, which eases their specification.

In the future, we plan to perform further case studies to substantiate the advantages of
our method. We also plan to extend ParTeG so that other models than state machines can
be reused for automatic test generation. Another important aspect is the satisfaction of
different coverage criteria that are based on control flow and equivalence class boundaries.
Finally, we will investigate combinations of existing coverage criteria to be satisfied by
test suites generated by ParTeG.
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