Patterns for Re-usable Aspects in Object Teams*

Dehla Sokenou Katharina Mehner Stephan Herrmann Henry Sudhof
GEBIT Solutions GmbH Technische Universitit Berlin

Cicerostral3e 37 Softwaretechnik, Sekr. FR 5-6

D-10709 Berlin Franklinstr. 28/29, D-10587 Berlin
dehla.sokenou @ gebit.de {mehner|stephan|hsudhof} @cs.tu-berlin.de

Abstract: Aspect-oriented software development still lacks practical evidence. While
aspects are claimed to be useful in adapting existing applications there is also first evi-
dence that they might themselves be re-usable. We present results from two case stud-
ies with the aspect-oriented programming language ObjectTeams/Java that investigate
the re-usability of aspects in developing a security framework. During the develop-
ment of the framework we have identified patterns for re-usable aspects that increase
the flexibility when applying a framework to a given application.

1 Motivation

Aspect-oriented software development provides new means for modularizing software and
thus aims at improving the understandability, re-usability, extensibility, adaptability, and
evolution of applications. While purely academic research in this area suggests a major
benefit the actual practical evidence is still rare. The joint research project TOPPrax [TOP]
was initiated to demonstrate by means of industrial case studies that aspect-oriented soft-
ware development has reached a level of maturity where it is able to master complexity
of modern software systems. Based on direct comparative studies of aspect-oriented and
object-oriented software development, TOPPrax provides an evaluation basis. In order to
make practical deployment more realistic, concepts, tools, and methodology have been
completed in parallel to the case studies.

The chosen aspect-oriented approaches Object Teams [HH] and Caesar [MO03] go beyond
approaches like Aspect] [KHH™01] by treating aspects as first class citizens including
inheritance and polymorphism and by supporting aspects with a rich internal structure
through encapsulation and refinement of collaborations.

The main focus of the TOPPrax case studies is on re-usability and extensibility. Here, we
present some results from the case studies carried out using Object Teams. The theme of
the case studies presented here is security. These case studies investigate not only, whether
applications written in Object Teams can be easily extended with a security component,
but also whether an aspect-oriented security component can be designed for re-use.

*This work has been supported by the German Federal Ministry for Education and Research (BMBF) under
the grant 01ISC04 (Project TOPPrax).



The test case for the case studies presented is another TOPPrax case study devoted to
the implementation of an object-oriented and an aspect-oriented variant of a disposition
component, an ERP (enterprise resource planning) system for monitoring stock items and
generating order proposals. Based on this component, a feasibility study aimed at inves-
tigating the feasibility of implementing re-usable aspects with Object Teams. As one of
its effects this case study helped to consolidate the language and its tools. It was also a
comparative study that investigated the use of the language JAsCo [SVJ03]. This compar-
ison will not be discussed here. The security case study, built on top of the disposition,
investigated how a fully functional security component can be designed for re-use.

The security component should not only be usable with the two variants of the disposition
but also with other ERP systems. Different systems and their given structure might im-
pose different requirements on the security component. Therefore, this component should
capture the common core while permitting adaptation for specific requirements. To this
end, we have designed and implemented a framework for the security component using
aspect-oriented technology. The common core is implemented in a generic way using as-
pects and can be stepwise refined using aspect-oriented technologies. The aspect-oriented
framework does not only use aspects to structure the framework internally, but aspects
play a central role in connecting the framework with a given application. Of the numerous
patterns identified throughout the development of the framework, here, we focus on those
patterns that guide the developer towards re-usability of aspect modules.

The paper is structured as follows. In Section 2, we give a brief overview of the Object
Teams programming model. The security case study is introduced in Section 3. Section 4
presents the patterns for re-usable aspects.The case study on re-use feasibility is presented
in Section 5. Section 6 discusses the re-use of aspects and synergetics with established
re-use technologies. Section 7 compares our approach to related work. In Section 8, we
conclude and give an outlook to future work.

2 A Brief Introduction to the Object Teams Programming Model

Object Teams [Her02] is an aspect-oriented programming model that combines several
concepts of other programming paradigms and techniques. It introduces a new module
concept, the feam. A team is a package that groups classes (see Figure 1). At the same
time, a team has class features, including inheritance and instantiation. A team instance is
a container for objects defined within and provides a context for their collaboration. The
classes contained in a team are roles that can decorate other classes. A role is bound to a
class by declaring a playedBy-relation. A decorated class is called base. A base object can
have only one role instance per role class and per team instance. A role can interact with
its base object in two ways:

e A role class can specify callin method bindings. Thereby, a role instance can inter-
cept method calls to its base object and execute a role method. Callin bindings can
be of type before, after, or replace, meaning that the role method is executed before,
after or instead of the base object’s method it intercepts. In aspect-oriented program-



public team class ATeam{
0 ATeam public class RoleA{

public void rm1(){...}

RoleA RoleB

abstract public class RoleB{
rmi rm2 BaseA abstract public void rm2();

ega‘” bm1 e ’
@\7‘* public team class ASubTeam extends ATeam{
ASubTeam APV public class RoleA playedBy BaseA{

e y”| BaseB

RoleA rmil<- after bmi;
RoleB bm2 Yo
rml<-bmil public class RoleB playedBy BaseB{
rm2->bm2 rm2 ->bm2;

Figure 1: Object Teams Example

ming, the elements referred to in callin bindings are called join points [KHHT01].

e A role class can specify callout method bindings. This allows role instances to
forward method calls to base methods. Aside from methods also fields of a base
class can be made accessible via callout bindings.

Bindings can access any methods and attributes of the base objects including private class
members. Roles and their enclosing teams encapsulate behavior that can adapt a collabora-
tion of base classes in a specific context through the means of bindings. The team concept
is scalable in two respects: Firstly, a role of a team can itself be a team. Secondly, not only
ordinary classes can be bound by a role but also team classes and role classes.

The adaptation can be controlled at runtime. A team instance can be activated or deacti-
vated. If a team is active, all callin bindings are enabled; if it is deactivated, they have no
effect. Deactivating a team instance does not affect its state nor the state of its contained
roles. This state persists throughout the life-time of the team instance. If multiple callins
affect the same join point the order of execution is determined by the order of team acti-
vations in conjunction with precedence declarations within a team if needed. In addition,
guard predicates allow the execution of callins to be further restricted.

Object Teams supports bindings to explicitly listed features of a given base class. A new
pointcut language for binding a role method to a set of join points selected through ad-
vanced query mechanisms is being integrated into the tool-suite for Object Teams.

A more comprehensive introduction to Object Teams is given in [Her02]. An exhaustive
description of ObjectTeams/Java, which realizes Object Teams for the host language Java,
is given in the official ObjectTeams/Java language definition (see [HH]).

3 The Security Case Study

The security component requires a generic design and implementation that can be refined
to fit the needs of the adapted base systems. Before we present the security component we
introduce the disposition components, to which the security component is applied.



3.1 Overview of the Disposition Components

The aspect-oriented and the object-oriented disposition components fulfill the same re-
quirements. Each monitors items on stock, supports manual and automatic creation of
order proposals, evaluates order proposals, and allows orders to be made. The underlying
domain model of both components covers relevant properties of stock items and models
various delivery conditions of suppliers.

Both implementations share the user interface and the persistence layer which have been
implemented using state-of-the-art object-oriented technology. The user interface has been
generated using a GUI modeling framework. The persistence layer of the disposition
component has been implemented using a persistence framework. Both frameworks are
part of the commercial framework TREND for model-driven development [GEB].

For the aspect-oriented part of the case study, the required functionality has been im-
plemented using ObjectTeams/Java. Teams have been used to encapsulate workflows, to
wrap the persistence layer, and to encapsulate a database transaction. The system design
follows the model-view-controller architectural style, where an excellent separation be-
tween the three parts is achieved using the aspect-oriented capabilities of teams and roles.
The object-oriented version has been implemented in pure Java.

Both disposition components have not been designed with a security layer in mind.

3.2 Security Requirements

The security component is intended to provide access control by user authentication and
authorization. A simple user management which stores login names and passwords is
assumed. For the authorization it is assumed that access restrictions for each user can
be specified. Authentication and authorization are the functional requirements detailed
in the following. Authorization is dependent on authentication. If only authentication is
requested, the authenticated user has complete access to the application.

The minimal requirement for authentication is the login feature. How the login is carried
out, e.g., through a user interface or through operating system user identification is left
open. The login feature does not necessarily imply logout. In the simplest variant, logout
is implicit in the shutdown of the application. An optional logout feature supports to
explicitly log out from the system. After logout a new user or the same must be able to
login. Optionally, a timeout is available to logout a user automatically after a configurable
time span has elapsed without user interaction. Logout and timeout both require the login
feature. Logout and timeout do not require each other, however the absence of logout has
an implication on the timeout. If no explicit logout is available, the timeout shuts down the
implementation, otherwise, a new user can login. Logout and timeout are not supported if
the login is realized by operating system user identification.

Authorization is supposed to cover business objects containing data but also workflows.
Different access rights and different user roles are distinguished.



9Logout’Option Team
oTimoutOptianTeam
» LoginManager

G;—‘ 9
LoginManagerTeam A& TimerStarter AuthorizationTeam
> «playedBy» LoginManager

<

Figure 2: Teams defining contexts for security component

3.3 Security Design Issues

The generic solution for the authentication part of the case study consists of four modules,
each encapsulated by using the team concept (see Figure 2). The first team (Login-—
ManagerTeam) is the base for all other teams. It manages the login process. The two
optional features are implemented by the teams LogoutOptionTeam and Timeout—
Opt ionTeam. Authorization is covered by the AuthorizationTeam. Using the team
concept each feature becomes easily traceable.

The presented teams are abstract and implement basic functionalities of the security com-
ponent. They can be refined independently from each other to adapt a concrete sys-
tem. The only references between teams are on the abstract level (abstract coupling).
The LogoutOption-Team and the TimeoutOptionTeam depend on the Login-
ManagerTeam, e.g. they might need information about the login context. The Login—
ManagerTeam is independent of the two other teams and should not need to make its
internal structure public. Through a playedBy relation, the LogoutOptionTeam and
the TimeoutOptionTeam can access features of the LoginManagerTeam that have
not been made explicitly visible (decapsulation) and they can also adapt the behavior of the
LoginManagerTeam when needed. The LoginManagerTeam can thus be designed
unaware of the two other teams. Similarly, the AuthorizationTeam is dependent on
the LoginManagerTeam but not vice versa.

The teams for the options logout and timeout are independent. If one of them has no con-
crete subteam or the concrete subteam is not activated, the given option is not available.
The team concept even allows to activate and deactivate the options at runtime; for exam-
ple, a user-dependent timeout is easy to realize by deactivating or activating the timeout
option for a specific user.

The requirements lead to a framework-like design of the abstract solution of our security
component. The abstract implementation should be flexible enough to be adapted to dif-
ferent base systems. The strategies for implementing the concrete level and adapting the
base component vary significantly between systems (see also next section). In the end,
we have implemented a three step refinement of teams for the security solution applied to
the disposition components: the generic solution, the disposition-specific solution and a
solution depending on the variant (object-oriented or aspect-oriented). In the process of
refining the abstract security solution, we have detected a set of patterns that allow a flex-
ible refinement on the concrete team level. The next section introduces the main patterns
we have found in our security case study.



0 SecurityManager

activateTeams ()

AppAdapter

— initialize()

EAOSecurityManager 0OOSecurityManage&

AOSecurityManager () { AppAdapter
activateTeams();

«playedBy»_ |

OODisposition

initialize < <afters start

Figure 3: Dependent Activation

4 Patterns for Re-usable Aspects

This section presents some patterns we have identified while implementing the security
case study. Another pattern identified while implementing the feasibility study is intro-
duced in Section 5. Some of these patterns were also found in other systems that are
implemented in ObjectTeams/Java. All presented patterns consist of a generic solution
that implements an abstract team, and a specific solution which inherits and refines the
generic solution. In the following, we call the generic solution the abstract level, and the
inherited and refined solution the concrete level. The patterns are presented by giving a
short description of the problem and our solution, followed by an example from the case
study and an overview of the general structure.

4.1 Dependent Activation

Different team modules differ in what context they require to be setup, before they can be
initialized and activated. While some can be activated right at program start, other teams
require that certain initializations happen beforehand. A solution is sought that flexibly
supports various dependencies of this kind.

In the security case study, the described problem occurred when implementing the security
manager'. The security manager is a team that activates all security-relevant teams to
offer security for the disposition component. Being developed by two different software
engineers, each variant of the disposition has a different start mechanism. We wanted
to apply the same generic solution on the abstract level for both variants which lets the
developer decide when to activate the teams managed by the security manager.

The solution for this problem is shown in Fig. 3. On the abstract level, the method for
initialization —here: activateTeams- is introduced in the team.Additionally, a role is
implemented —here: AppAdapter— with a method that calls the initialization method.

'Note: Our security manager which is a team must not be confused with the Java security manager.



At the concrete level, we have essentially two options for refining the superteam. The
first implementation is to call the initialization method directly, in the example shown in
team AOSecurityManager. Typically, the initialization method will be invoked by the
team’s constructor, like in the example. The team’s constructor will in turn be hooked into
the application’s startup mechanism?. In this case, the role AppAdapter is left unbound.

The second way of implementation —in the example realized in the team OOSecurity-
Manager—is to bind the contained role to a class in the base system and let the initializa-
tion method be called indirectly via a callin binding to the role method. In the example,
the role AppAdapter is bound to the base class OODisposition, and the method
activateTeams is indirectly called by intercepting the base method start with the
method initialize. An instance of the OOSecurityManager is constructed and
activated by the application’s startup mechanism.

This solution realizes the required flexibility. When a given state in the base system is
reached the initialization method can be triggered by binding it to a method in the base
system that represents that state change. A restart or reset can also be implemented using
that pattern if the method triggering the aspect is called more than once. A guard can assure
that the method will only be called once when resetting is not desired. Both possibilities
of implementing the subteams can be combined, e.g. if the team should be initialized on
start-up of the base system and should be reset by a given trigger.

The role should not be abstract in the superteam because we do not want to force the sub-
team to refine this role. To avoid access to the role from outside the team, the role should
be declared as protected which for roles defines a stronger restriction than the normal se-
mantics of protected in Java. Thus, if not used as a trigger for initialization the role
remains unbound in subteams and it is guaranteed not to be initialized from outside.

4.2 Feature Selection

The second pattern resembles the situation of designing a library: A module implements
a rich set of functionality whereas specific applications will use only part of it. However,
in the case of a re-usable aspect there is no main program that selects features by explicit
method calls.

In our security case study, we found such a situation when adapting the disposition GUI to
support an explicit logout operation. Different elements like a menu item and/or a logout
button need to be added to the GUI. Both possibilities can be implemented on an abstract
level but the implementation of the concrete logout team should decide in which way the
user can logout.

2QbjectTeams/Java supports the addition of aspects to an existing application by simply specifying the given
teams in the application’s launch configuration.



G LogoutOptionTeam

ViewAdapter

This is easily solved in Object Teams. The
abstract team (see Fig. 4) implements the

full set of functionality, here: adding the adaNonuTion()
button and the menu item. The subteam —
here: LogoutOptionTeam’— is free to

bind whichever subset of methods should Gm

be used. In the example, callin bindings
will cause only the button to be added to
the GUI, not the menu item. The method
addMenuItem is unbound. Thus, it will
never be called.

ViewAdapter' | —<PlayeByx | nispositionGUI

addButton < initializeGUI

«after»

Fig. 4: Feature Selection

There are some advantages of partially bound role behavior. All behavior that can be
implemented on the abstract level is realized there. The user of the abstract classes which
implements the concrete adaption of a base system can select functionality by simply
binding methods or leaving them unbound. If the whole functionality will be used, role
methods can be bound by the same base method (in the example, both add methods can
be bound by the method initializeGUI). Itis not necessary to find different triggers.

4.3 Uniform Role Access

It is a good object-oriented style to im- O LogoutaptionTean |

plement against an abstract interface rather ViewAdapter

than referring explicitly to its implementa- [ addButton()

tion. Using Object Teams the realization be- E» getRootPane()

hind an abstract interface can be provided in e

two different ways: by implementing a func- Z%

tionality directly or by delegating the call to LogoutOptionTeam'

the adapted base object using a callout bind- ViewAdapter 21> DispositionGuI
ing. Based on the option of implementation getRootpane > getRootPane
vs. delegation an abstract role method can getRessources () {

be used to abstract not only from how cer- :

tain behavior is implemented but also from

where it is implemented. Behind this ab- Fig. 5: Uniform Role Access

straction a (refining) role is completely free to choose or even combine both techniques
for providing behavior. Both kinds of behavior can be accessed in a uniform way.

Fig. 5 illustrates this situation and shows where we use the uniform access to role behavior
in the context of the security case study. The LogoutOptionTeamn is responsible for
the logout option. This team has a role ViewAdapter that adds buttons to the given
disposition view. To implement the addition of buttons, a set of helper methods is declared
abstract in the superrole and must be redefined in subroles. The example shows two of
these methods. Method getRootPane returns the root pane of the disposition view



and method getRessources returns the ressource bundle to use. Both methods are
defined in the same role and can be called on a role instance but the behavior differs. The
first method getRootPane is delegated to the adapted view object which returns the
rootpane of this view object. The second method is implemented completely in the role,
no information from the base object is needed.

The uniform view of a role decouples the caller of any role method from the design deci-
sion of how an implementation is provided. The developer of the concrete level can decide
whether the interface is implemented in the role itself or delegated to the base object.
Both ways of implementing the interface can be mixed. Using parameter mappings, the
interface of the base method can be mapped to the required interface of the role method
enabling the Virtual Restructuring pattern, which is however beyond the scope of this pa-
per. The Uniform Role Access pattern would not be possible in a language that strictly
distinguishes between collaboration modules and connectors (see discussion in Sect. 6).

4.4 Reminder Roles

As we implemented the abstract level, we had to decide how to cope with roles that could
possibly be needed in the context of a given team but have no functionality nor references
on the abstract level. If we do not give a hint in the abstract team, maybe the developer of
the concrete level will forget or be confused about the role and believes such a role is not
important. Otherwise, we can implement such an empty role but in this case we have to
explain that this role has no behavior and no dependencies.

We propose the second alternative. We call these roles reminder roles. Their purpose is
methodical. They remind the developer that there are roles to implement and bind on the
concrete level —we are free to give detailed documentation that explains how to use these
roles— and we have a consistent naming of these roles in all subteams, thus, teams are
better readable and comprehensible. Reminder roles are normal, but empty roles. If we
want to force implementation in subteams, we declare them as abstract but also concrete
reminder roles are possible, not demanding for an implementation in subteams.

We found such a role in the team TimeoutOptionTeam where the reminder role View—
Adapter indicates that the actual view should be reset or managed after timeout.

5 The Re-use Feasibility Study

Independent of the main security case study, a comparative case study examining the fea-
sibility of aspect re-use was performed [Sud06]. This study shares several basic consider-
ations with the main case study, such as the use of the TOPPrax disposition system as part
of the study’s set of base applications and the focus on security aspects, but differs from
this paper’s main study in its scope and goal. Being a feasibility study the focus was more
on exploration rather than on delivering a product. By the feasibility study we assessed



0 SuperTeam

teamFeature ()-<—

Controller ControlMarker ControllingRole
D < <PlayedBy»

teamFeature() teamFeature() teamFeature()

-
- specialization to control aspect
SubTeam

Figure 6: A role acting as controlling role.

joadse Aojdap o0} uonezierads

the conceptual and technical maturity, especially regarding aspect re-use in oblivious base
applications. Several improvements to the language and its tools have been stimulated by
this case study, from which the main case study could then benefit.

In the course of the study a set of abstract aspects was designed and implemented. The
selected domain included a session aspect to provide a way to propagate user context infor-
mation in base applications not offering such a functionality and to allow uniform access
in base applications which do. This aspect was complemented by aspects for basic authen-
tication and authorization. While were designed to cover different parts of the domain, the
target was to do so without causing the aspects to depend on each other.

5.1 Controlling Roles

During the design of the feasibility study’s set of aspects, the need arose to allow aspects
to be specialized along two different directions. The first direction being the coupling be-
tween cooperating aspects and the second the adaption to a concrete base application. To
permit the — initially uncoupled — aspects to cooperate, without reducing their ability to
be deployed in a concrete environment, a design based on a pattern we call controlling
roles was introduced. Controlling Role stands for a role class bound to an abstract con-
troller class, which declares methods echoing the team’s basic features. The controlling
role contains method bindings to the controller classes’ methods, delegating the calls to the
corresponding team-methods. Figure 6 shows the basic layout of this architecture. Note
that there are no direct links between the participating entities, removing the need to ex-
change references during the program start-up. This also means, that all calls of inherited
methods on instances of subclasses of the Control Marker will be intercepted by all
active instances of the team. This may require some caution with non-singleton teams.
While using a bound role in a high-level aspect component might initially appear counter-
intuitive, it actually is a means to modularize dependencies. Essentially the pattern uses
the control marker class as a public interface of the aspect. As that class is not directly
part of the team, it can be specialized orthogonally to the specialization of the team, even
allowing the controlling class to be extended into other team classes. Thus it is possible to
use concrete subclasses of the marker to wire the aspects to each other, while leaving the
team inheritance to deploy aspects in the concrete base application.



The Controlling Role Pattern was central to the design and implementation of the fea-
sibility study’s set of security aspects, which was successfully deployed in several base
applications. While the aspects were not explicitly coupled initially, the design allowed
the implementation of the inter-aspect communication in re-usable modules. The resulting
system was too limited to be considered a framework, but showed that aspects can coop-
erate to cover a domain, without resulting in an inherent tight coupling between aspects.

The findings of the feasibility study back the main study’s notion of striding towards frame-
works of re-usable aspects. Similarities to patterns presented in section 4 were identified
in the independent designs, indicating the presence of an intuitive set of idioms and pat-
terns for ObjectTeams. Also, we found modularization of connecting code to be possible,
enhancing the re-use of such connections.

6 Discussion

As we have seen in our case studies, patterns can be found in aspect-oriented programs.
When using aspect-oriented techniques, we go beyond the object-oriented concept of in-
heritance where subclasses can only override existing methods and add new ones. Object
Teams provides even more flexibility by combining inheritance with role concept, callin
binding mechanism and callout feature.

An important feature used by most of the presented patterns is the connector concept. A
predecessor of the Object Teams model, Aspectual Components [LLM99] introduced the
distinction into collaborations and connectors. We have two reasons for not enforcing this
distinction by explicit language features: the one concept “team” suffices for both pur-
poses; in terms of conceptual economy, our solution provides the same benefit at a lower
price. Secondly, the unification of collaborations and connectors emphasizes flexibility
over strictness by allowing the definition of teams which contribute to a collaboration in
terms of added implementation and at the same time define connections in terms of role
base bindings. We have seen that this flexibility is an essential enabling feature for the
design of re-usable aspects.

Thinking a step further, re-usable aspects have the potential to advance established soft-
ware re-use techniques. The classical issue in software re-use is the separation of com-
monalities and variabilities among several applications. Decades of object-oriented design
provide plenty of experience on how to develop generic implementations prepared for re-
finement. Still, the development and application of modules that are re-usable in a great
variety of usage-contexts is one of the most difficult tasks in software development even
today. Two groups of questions need to be addressed to understand these difficulties:

1. What is the nature of variation points? Are they identifiable parts of the implemen-
tation? Are they (necessarily?) marked as variation points or can implicit variation
points be used? What are the mechanisms to bind a variation to a variation point?

2. What is the overall process of software development? Which roles are involved,
how do they communicate? Who defines the rules?



The simplest form of re-use is a library where variation points are limited to explicit
method parameters. For some time frameworks were considered the preferred technology
for re-use in all other settings where libraries are just too limited. The central mechanism
in object-oriented framework design is the use of dynamic binding to support methods as
variation points. I.e., during framework instantiation application-specific methods can be
provided that will be called by code within the framework. While this concept is very
powerful and successful in certain areas, frameworks seem to have a problem with scala-
bility.?

We believe that the questions from group (2) give the key to the limitations of both libraries
and frameworks. Libraries provide fixed implementations of well defined functionality,
giving full power to the application developer when to invoke which function and with
which arguments. Frameworks, to the contrary, make no final statement on how a given
feature is implemented but are quite strict with respect to the overall structure and perhaps
control flows within an application.

This results in tremendous difficulties if one tries to integrate more than one framework
into the same application [MBF99]. The preferred way of using a framework is to first
choose the framework and then develop an application design according to the rules de-
fined by the framework. The dilemma is in fact similar to what has been called the “’tyranny
of the dominant decomposition” [TOHS99]: no matter where you start, the initial design
decision will significantly limit later choices. Much in the vein of [TOHS99] we sug-
gest to consider composition as a primary focus in software development in order to allow
different structural breakdowns to co-exist within the same application and leaving the
integration to a separate software unit.

Coming back to the first group of questions above this means that composition should in
fact be considered a variation point. As an example consider our first pattern, Dependent
Activation. Usually a framework provides hooks which may be used by applications in
order to be triggered during system start for performing application specific initialization.
In such cases the application may decide, what initializations to perform, but it cannot
freely choose the point in time when to perform initialization. Using the pattern, the ini-
tialization of the application and of the aspect are implemented in complete ignorance of
each other. Integration is the sole responsibility of the connector which is implemented as
a refinement of the aspect. Note that our proposed solution is even more flexible than the
use of abstract pointcuts as it is suggested to be good AOP design. Using our pattern it is
not even predefined whether any joinpoint within the application will be used as a trigger.

The Feature Selection pattern can be interpreted as a very convenient mechanism to pro-
vide what has been called the framework internal increment, i.e., speculative functionality
as part of the framework that could be useful for applications but does not belong to the
core structure of a framework. In conventional object-oriented frameworks selecting fea-
tures from the framework internal increment relies on object instantiation and method calls
only. To this our patterns adds new options for selective integration.

30ne of these problems relates to the fact, that standard object-oriented languages provide means to override
methods, but not to override classes. Thus, defining the selection of classes as a variation point is quite cumber-
some in those languages. Object Teams overcomes this problem by using virtual classes as further specified in
[Ern01].



Finally, the Controlling Role pattern spans the team inheritance and the controlling role
inheritance dimensions for adding application specific increments.

Using Object Teams with patterns like those given in this paper can break the tyranny of
any dominant design decision. Key features to a “more democratic” software model are:

1. Explicit binding of classes with bi-directional method bindings (callin and callout).
2. Role objects allowing to adapt existing objects without changing their structure.

3. The unlimited option to refine existing classes, no matter if they are base, team or
role classes. In Aspect], e.g., a concrete aspect cannot be specialized further which
limits the applicability of our patterns.

4. The ability to compose aspects from aspects by allowing team classes to appear in
the position of roles and of bound base classes alike. Unlike in Object Teams, the
“advice” construct in many AOP languages can neither be redefined nor used as a
joinpoint nor bound to more than one pointcut.

5. Based on the given language features each of the patterns presented defines a new
variation point which did not exist as an well-defined variation point before.

7 Related Work

In this section, we compare our approach to related work focusing on aspect-oriented
security and re-usable aspects.

Security is mentioned as one of the main applications for aspect-oriented programming
techniques since security code crosscuts the application in the same way as other typical
aspects like logging. Therefore, a lot of work is done in the field of security and aspects
(see for example [Lad03, Bod04, LvdLT04, HWL04, SZ03]). Similar to our implemen-
tation, most of the presented work is based on JAAS. Some differences are rooted in the
fact that most prior research uses Aspect] as aspect-oriented programming language. Most
publications on aspects for security are limited to the purely behavioral part, lacking an
integration into the applications GUIL This issue is explicitly addressed by our work.

In [Lad03], both issues of JAAS, authentication and authorization, are addressed by using
aspect-oriented programming. For the authorization part, so-called worker objects
are used to delegate the proceed of an around advice to an object of type Privi—
legedAction like it is requested in JAAS. A similar technique is used in the authoriza-
tion part of our security case study, using a new Object Teams language capability that
allows to implement worker objects in a similar, but type-safe, way.

A comparison between container-managed and aspect-oriented security (based on JAAS,
too) is found in [SZ03]. The conclusion is that aspect-oriented security is more flexible
since container-managed security is limited to features of the container. Both share the
advantage of obliviousness [FF00] and can be combined easily. In TOPPrax project, a
comparison of the developed security framework with security managed by the TREND
framework of GEBIT [GEB] will follow after finishing the case study’s authorization part.



In [HWLO04], a security framework is presented. The authors mention that generic secu-
rity aspects are hard to develop because the adapted applications have different require-
ments regarding security. We have made the contrary experience. Our approach shows
that generic security aspects can be implemented. Different options are implemented in
different generalized teams and can be specialized independently for the adapted system.

An approach of using view connectors for implementing a security framework is found
in [VPWIJ04]. The presented framework is realized using JAC [PSD104]. View connec-
tors have many similarities with roles in Object Teams. In the presented solution, only
wrappers for adapted objects —meaning the definitions of join points— are generic. The
approach seems to be less flexible than our approach meaning that features cannot be flex-
ibly combined like in our security implementation. In [VPW™05], this approach has been
ported to CaesarJ [MOO3]. In addition, the approach is made independent from a concrete
authorization engine by using wrappers which only require that the engine used conforms
to a basic model of authorization. However, it does not change the overall approach that no
framework guides or controls the integration of the domain and the authorization engine.

In [HHUKO4], a case study on an aspect-oriented framework for graph traversal is pre-
sented. As we have found in our work, the authors mention that new composition tech-
niques provided by aspect-oriented programming help to implement more flexible frame-
works. Aspect-oriented frameworks can reduce the complexity of both, the framework
and its specialization. Join points are seen as additional hooks for customization. Since
this work is focused on join points, it cannot yet be compared with our work directly, as
complex join points will be only introduced in the authorization part of our case study.

A collection of re-usable Aspect] aspects is presented in [Isb]. The work discusses de-
ployment and implementation of such aspects. The presented aspects perform isolated
functionalities and are thus unlike our notion of aspect frameworks, as they do not coop-
erate to cover a domain. However, the use of XML aspect deployment descriptors shows
similarities to the concept of connectors.

8 Conclusion

Developing re-usable aspects is a challenging task because it breaks the linearity of the
software development process. In this approach both the application and the aspect are to
be developed independently. Neither the application developer nor the aspect developer
are able to make use of knowledge about the other component. In fact the application may
not even be prepared for any security aspect. Even more so, the aspect should be prepared
for integration and adaptation with a great variety of very different applications. This calls
for a kind of generality that has not been witnessed before.

From this requirement the need for new kinds of variation points arises. As we have shown
in our paper, the language ObjectTeams/Java is capable of providing new manifestations
of variation points within a program. By these capabilities the object-oriented tradition of
frameworks is revived and new forms of re-use become manageable. On the other hand,
due to the additional flexibility introduced by this language, it is even more important to



provide guidance on how to use the new powers with style.

The desired guidance shall be given by collections of idioms and design patterns. We
have presented some patterns which have been found in two case studies. We focussed on
those patterns that provide the flexibility to make our aspects re-usable. This work is based
on earlier experience of aspect-oriented development of the application core where also a
number of patterns has been identified. It is important to note that the new patterns make
hardly any assumption regarding the implementation techniques used in the application
core. In fact, in one variant of our system the core was already implemented using aspect-
oriented features. We are not aware of prior work demonstrating to this extent how aspect-
oriented programming can be used consistently for a whole system.

The flexibility gained by the patterns in this paper can be grouped in different ways. The
Dependent Activation and Feature Selection patterns both relate to receiving trigger events
from the application. The Uniform Role pattern and the Controlling Role pattern provide
additional flexibility for aspect refinement. The patterns make extensive use of all key
features of ObjectTeams/Java, demonstrating the suitability of this language for the design
and implementation of re-usable aspects.

We are currently finishing the authorization part of the case study, where we have found
even more occurrences of the existing patterns and perhaps will find a few more patterns,
too. Although we found the presented patterns in two security-related case studies, we can
describe them in an abstract manner. Thus, we are confident that these patterns can be
applied to other domains with similar problems. In order to support this assumption, we
will apply detected patterns while implementing case studies in other application domains.
All these patterns are being collected in a comprehensive pattern catalog.

References

[Bod04] R. Bodkin. Enterprise Security Aspects. In Workshop on AOSD Technology for
Application-Level Security, AOSD’04, 2004.

[EmnO1] E. Ernst. Family Polymorphism. In Proc. of ECOOP’01, volume 2072 of LNCS.
Springer Verlag, 2001.

[FFOO0] R. E. Filman and D. P. Friedman. Aspect-Oriented Programming is Quantification and
Obliviousness. In Workshop on Advanced Separation of Concerns, OOPSLA’00, ACM
SIGPLAN Notices, 2000.

[GEB] GEBIT TREND Framework for Java.
http://www.gebit.de/Loesungen/trend_web/Loesungen_trend_en.htm.

[Her02] S. Herrmann. Object Teams: Improving Modularity for Crosscutting Collaborations. In
Objects, Components, Architectures, Services, and Applications for a Networked World
(Net.ObjectDays), volume 2591 of LNCS. Springer Verlag, 2002.

[HH] S. Herrmann and C. Hundt. ObjectTeams/Java Language Definition.
http://www.objectteams.org/def/0.9/index.html.



[HHUKO04]

[HWLO04]

[Isb]

[KHH01]

[Lad03]

[LLM99]

[LvdLT04]

[MBF99]

[MOO03]

[PSDT04]

[Sud06]

[SVIO03]

[SZ03]

[TOHS99]

[TOP]
[VPWT05]

[VPWJ]04]

S. Hanenberg, R. Hirschfeld, R. Unland, and K. Kawamura. Applying Aspect-Oriented
Composition to Framework Development: A Case Study. In Ist Int. Workshop on
Foundations of Unanticipated Software Evolution, ETAPS’04, 2004.

M. Huang, C. Wang, and L.Zhang. Toward a Reusable and Generic Security Aspect
Library. In Workshop on AOSD Technology for Application-Level Security, AOSD’04,
2004.

W. Isberg. Check Out Library Aspects with Aspect] 5. AOP@Work (14), http://www-
128.ibm.com/developerworks/java/library/j-aopwork14.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An
Overview of Aspect]. In Proc of ECOOP’2001, volume 2072 of LNCS. Springer Verlag,
2001.

R. Laddad. Aspect] in Action: Practical Aspect-Oriented Programming. Manning
Publications, 2003.

K. Lieberherr, D. Lorenz, and M. Mezini. Programming with Aspectual Components.
In Technical Report, Northeastern University, April 1999.

R. C. Laney, J. v. d. Linden, and P. Thomas. Evolution of Aspects for Legacy System
Security Concerns. In Workshop on AOSD Technology for Application-Level Security,
AOSD’04, 2004.

M. Mattson, J. Bosch, and M. Fayad. Framework Integration Problems, Causes, Solu-
tions. Communications of the ACM, 42(10):81-87, 1999.

M. Mezini and K. Ostermann. Conquering Aspects with Caesar. In Proc. of AOSD’03.
ACM, 2003.

R. Pawlak, L. Seinturier, L. Duchien, L. Martelli, F. Legond-Aubrey, and G. Florin.
JAC: A Framework for Separation of Concerns and Distribution. In Aspect-Oriented
Software Development, chapter 16, pages 343-369. Addison-Wesley, 2004.

H. Sudhof. Vergleichende Fallstudie iiber Techniken fiir wiederverwendbare Aspekte
(german). Diploma thesis, Technische Universitit Berlin, Germany, 2006.

D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo: An Aspect-Oriented Approach
Tailored for Component Based Software Development. In Proc. of AOSD’03. ACM,
2003.

P. Slowikowski and K. Zielinski. Comparison Study of Aspect-Oriented and Container
Managed Security. In Workshop on Analysis of Aspect-Oriented Software, ECOOP’03,
2003.

P. Tarr, H. Ossher, W. Harrison, and S. Sutton, Jr. N Degrees of Separation: Multi-
Dimensional Separation of Concerns. In Proc. of the 21st ICSE, 1999.

TOPPrax Homepage. http://www.topprax.de.

T. Verhanneman, F. Piessens, B. De Win, E. Truyen, and W. Joosen. Implementing a
Modular Access Control Service to Support Application-specific Policies in CaesarJ.
In Ist Workshop on Aspect-Oriented Middleware Development. ACM, 2005.

T. Verhanneman, F. Piessens, B. De Win, and W. Joosen. View Connectors for the
integration of Domain Specific Access Control. In Workshop on AOSD Technology for
Application-Level Security, AOSD’04, 2004.



