
ParTeG - Integrating Model-Based Testing and Model
Transformations

Dehla Sokenou Stephan Weißleder
GEBIT Solutions Fraunhofer-Institut FIRST

dehla.sokenou@gebit.de stephan.weissleder@first.fraunhofer.de

Abstract: In this paper, we present model-based testing for UML state machines with
the test generator ParTeG. We sketch the impact of model transformations on model-
based testing and also sketch the results of a corresponding case study with ParTeG.

1 Model-Based Testing

ParTeG [Wei] is a model-based testing tool that was initially developed to implement new
algorithms into a prototype as a proof of concept. By now, ParTeG 1.3.1 is available as
a free Eclipse plug-in, hosted by Sourceforge. It automatically generates test cases from
UML state machines and class diagrams that are annotated with OCL expressions. ParTeG
interprets a wide range of OCL expressions, including inequations. ParTeG supports test
suite generation for JUnit 3.8 / 4.3, Java Mutation Analysis, and CppUnit 1.12. In the fol-
lowing, we present a short overview of ParTeGs features for model-based test generation.

Coverage criteria are a widely accepted means of test suite quality measurement. There are
several kinds of coverage criteria. The most important feature of ParTeG is the ability to
satisfycombined coverage criteria: For instance, control-flow-based coverage criteria like
MC/DC or transition-based coverage criteria like All-Transitions can be combined with
boundary-based coverage criteria like Multi-Dimensional: Transition paths are generated
according to the control-flow-based respectively transition-based coverage criterion. The
selected coverage criterion is converted into a set of model-specific test goals: For in-
stance, All-States is converted into test goals, each of which is referencing one state of the
state machine. ParTeG generates paths from the state machine’s initial state to the states
that are referenced by the test goals. All conditions on each path are transformed and used
for concrete input parameter selection corresponding to the selected boundary-based cov-
erage criterion. With these input parameters, the state machine paths are converted into
executable test cases of one provided target language. ParTeG also supports test goal mon-
itoring so that already covered test goals are excluded from further test case generations.

Mutation analysis is a wide-spread approach to measure the fault detection capability of a
test suite. This approach is based on fault injection in a correct implementation. ParTeG
supports mutation analysis by using a mutation factory provided by the tester that delivers
a new mutant for each test execution and by generating JUnit code which can be used by
the mutation tool Jumble [UTC+07].



2 Model Transformations

Model transformations are means to convert a model into any other model of any other
modeling language. ParTeG supports several model transformations to improve the fault
detection capability of the generated test suite. It changes the structure of a state machine
while preserving its semantics. Several transformations can be found in a corresponding
report on an industrial cooperation [Wei09]. We present just one example: State machines
can contain choice pseudostates that reference more than one incoming and more than one
outgoing transition (see Figure 1(a)). The outgoing transitions also contain guards. Now
we compare the effects of existing coverage criteria: Transition-based coverage criteria
are focussed on transition sequences. They can enforce that all transition sequences from
the statesF or G to H or I are traversed. They fail, however, if the guard condition is
more complicated and we are interested in condition values. Control-flow-based coverage
criteria are focussed on guard conditions, but they do not necessarily cover all transition
paths. As a consequence, the guard values[X] and[else] may be tested, e.g. just including
the stateG – all faults that are related to stateF may be undiscovered. An intuitive solu-
tion seems to consist of generating two test suites for both kinds of coverage criteria. As
a result, transition sequences and guards are tested. However, the guards are not properly
tested for each sequence. Instead, we propose to transform the state machine, e.g. by split-
ting choice pseudostates according to their number of incoming transitions. Figure 1(b)
shows the transformed test model for this example. Since there is only one incoming
transition for each choice pseudostate, any selected control-flow-based coverage criterion
now has to be satisfied for both statesF andG. In our industrial cooperation, all proposed
model transformations resulted in an significant increase of the generated test suite’s fault
detection capability. All proposed transformations are implemented in ParTeG. They can
be automatically executed for all used state machines.

F

I
[X]

G

H[else]

(a) Part of the initial state machine.

F

I

[X]

G

H
[else]

[else]

[X]

(b) Part of the transformed state machine.

Figure 1: Model transformation to split choice pseudostates.

References

[UTC+07] Mark Utting, Len Trigg, John G. Cleary, Archmage Irvine, and Tin Pavlinic. Jumble.
http://jumble.sourceforge.net/, 2007.

[Wei] Stephan Weißleder. ParTeG (Partition Test Generator). http://parteg.sourceforge.net.

[Wei09] Stephan Weißleder. Influencing Factors in Model-Based Testing with UML State Ma-
chines: Report on an Industrial Cooperation. InModels 2009, October 2009.


