
FlexTest: An Aspect-Oriented Framework for
Unit Testing

Dehla Sokenou and Matthias Vösgen

Technische Universität Berlin, Fakultät IV - Elektrotechnik und Informatik,
Institut für Softwaretechnik und Theoretische Informatik, Fachgebiet Softwaretechnik,

Sekr. FR 5-6, Franklinstr. 28/29, D-10587 Berlin,
EMail: {dsokenou|mvoesgen}@cs.tu-berlin.de

Abstract. This paper examines whether test problems that occur specif-
ically during unit testing of object-oriented programs can be solved using
the aspect-oriented programming paradigm.
It presents the various problems in unit testing, shows conventional so-
lutions and describes aspect-oriented solutions to the problems. The
aspect-oriented solutions are supported by the unit test framework Flex-
Test of which the paper gives an overview.

1 Introduction

Unit testing is popular in the domain of object-oriented software development.
Unit tests are written using the same implementation language as is used for the
application under test.

However, some problems occur when unit testing object-oriented programs.
There are two different reasons for this. Firstly, problems result from object-
oriented characteristics like encapsulation and inheritance. Secondly, problems
are caused by unit testing itself. Writing test cases directly in an implementa-
tion language is easy for programmers but it is sometimes a repetitive task. All
constraints of the used language hold for the test, too.

In this paper, we investigate aspect-oriented programming techniques as a
solution to a few of the problems encountered in unit testing. We present the var-
ious problems in unit testing, show conventional solutions and describe aspect-
oriented solutions to the problems.

The unit test framework FlexTest [1] is presented, which supports the given
solutions. For each solution, we give an example of how it is implemented in
FlexTest.

The paper is organized as follows. Section 2 gives a brief introduction to
aspect-oriented programming. Section 3 looks at the question of wether unit
testing is a cross-cutting concern in the sense of aspect-oriented programming
with regard to the application under test. In Section 4, we consider the unit test
framework FlexTest in relation to the given problems and their solutions. Section
5 compares our work with similar approaches. Finally, we give a conclusion and
suggest some entry points for discussion in Section 6. This section also includes
an outlook on future work.



2 Aspect-Oriented Programming Techniques

Some concerns cannot be encapsulated in a class using object-oriented software
development. Classical examples here are logging, security, and synchronization.
For example, the logging server is implemented in one class, but client code is
needed in all classes that support logging. We say that code is scattered over the
system and is tightly coupled or tangled with the system. If both characteristics,
scattering and tangling, apply to a concern we call it a cross-cutting concern.

Aspect-oriented programming is an extension of object-oriented program-
ming that provides a solution for the given problem. Cross-cutting concerns are
encapsulated in modules called aspects. Scattering and tangling are hidden in
the source code. An aspect weaver is used to integrate cross-cutting concerns into
the business logic of the system. Source code is not changed but the compiled or
run-time code is modified, depending on the weaving strategy. Aspect-oriented
programming provides a non-invasive way of adding new functionality to an
implementation without affecting the source code.

An aspect encapsulates method-like code fragments, called advices. To weave
new functionality into an existing (adapted) system, join points have to be de-
fined. A join point is a point in the control flow of the adapted system, e.g.
a method call, method execution or an access to an instance variable. Impor-
tant for this paper is also the cflowbelow statement that refers to all points
in the stack trace below a given control-flow point. Point-cuts are collections of
join points. Advice code can be executed before, after or instead of the code
addressed by a point-cut, e.g. instead of a referred method execution with the
around statement. The original method can be called within the around advice
using the proceed statement.

We use aspect-oriented programming techniques for testing object-oriented
systems. We regard testing as a cross-cutting concern. Aspect-oriented program-
ming helps to encapsulate test code and provides a flexible test instrumentation
solution.

Before presenting some applications of aspect-oriented programming tech-
niques in our unit testing framework FlexTest in Section 4, we give a brief
introduction to aspect-oriented unit testing in the following section.

3 Aspect-Oriented Unit Testing

This paper investigates the use of aspect-oriented programming techniques for
unit testing. We view unit testing as it is defined in the field of extreme pro-
gramming. The focus of a unit test is a class, ”but test messages must be sent
to a method, so we can speak of method scope testing” [2]. For each method,
the tester must implement independent unit tests. A unit testing framework is
generally used to automatically execute and evaluate test cases.

Using aspect-oriented techniques for unit testing assumes that testing is a
cross-cutting concern with respect to the implementation under test (IUT). In
most cases, testing involves inserting additional test code into the IUT.



By looking at the additional test code and the IUT, we are able to determine
that

– We must abstract from the context of the methods under test in the testing
phase.

– Methods are dependent on instance variables. In some cases, test code must
have privileged access to instance variables to initialize and evaluate test
cases.

– Test code must be inserted in certain methods and classes in a similar way.
– Normally, unit test code is removed after the testing phase.

Given these requirements, we can say that testing is a cross-cutting concern
with regard to the system under test. Both characteristics of aspects, scattering
and tangling, hold for test code.

If, then, testing is a cross-cutting concern, the use of aspect-oriented pro-
gramming techniques will yield benefits.

The next section shows some applications of aspect-oriented programming in
unit testing and presents our unit test framework FlexTest.

4 Aspect-Oriented Programming Techniques in FlexTest

In this section, we examine some selected problems encountered while unit test-
ing object-oriented systems. First, conventional solutions to a presented problem
are shown and then these are compared with the aspect-oriented solution pro-
vided by FlexTest.

Fig. 1. Class Hierarchy of Flextest

FlexTest is a unit test framework for testing object-oriented programs. It has
two parts, an object-oriented and an aspect-oriented part. The object-oriented



Fig. 2. Aspect Hierarchy of Flextest

part is similar to the JUnit test framework [3] and provides classes for defining
test cases and test suites and functionality for test execution (see Fig. 1). Exam-
ples of framework classes are TestCase and TestSuite, similar to JUnit. The
aspect-oriented part supports additional functionality for using aspect-oriented
techniques in FlexTest (see Fig. 2). The main class is the class TestAspect. When
using the FlexTest framework, the class TestCase and the aspect TestAspect
have to be subclassed. Each subclass of TestAspect is assigned to a subclass
of TestCase. When we refer to classes of the implementation under test in the
following sections, we annotate them with (IUT), the ones of the object-oriented
part of the framework with (OOF) and the aspects of the aspect-oriented part
with (AOF). Subclasses of framework classes and aspects are annotated like their
superentities.

We decided to develop a new framework instead of using an existing frame-
work like JUnit because this allows us to design the object-oriented part depend-
ing on the aspect-oriented part and to enhance the aspect-oriented part flexibly
with respect to the unit test problems.

In the following subsections, we look at the different problems encountered
in unit testing. The aspect-oriented part of the FlexTest framework provides
aspect-oriented solutions to the given problems, as described below. The IUT is
a library of linear-algebra algorithms written in Java. The examples given in the
following subsections are written in AspectJ [4].

4.1 Encapsulation

In object-oriented systems, attributes and methods are encapsulated in classes.
As a result of encapsulation, classes are only accessible by interfaces. In testing,



encapsulation leads to the problem of insufficient access to the IUT. Classes can
only be treated as black boxes without access to inner states, which leads to a
less precise test oracle. Private methods cannot be tested by the test framework,
which is a test driver problem.

Without using external tools, there are two main solutions to this problem:

1. Changing the code for testing
The tester simply replaces all private members in the source code with public
members, which can be accessed by the test framework. The disadvantage
of this solution is that it means maintaining two versions of the same imple-
mentation.

2. Using language features
Some languages support exclusive access. For example, we can define friend
classes in C++ that have privileged access to a given class, here the tested
class. The disadvantage of this solution is the dependency of the class under
test and the test framework class. The class under test cannot be compiled
without the friend class. Moreover, the test concern still cross-cuts the ap-
plication concern.

We propose an aspect-oriented solution to the encapsulation problem. As-
pectJ, the aspect-oriented language used in FlexTest, provides the keyword
privileged for aspects, which allow privileged access to the adapted classes. In
the FlexTest framework, privileged aspects are used in addition to test classes
of the object-oriented part.

We show the privileged access using result checking as an example. Test
aspects select results of test cases via point-cut definitions. To make definitions
of point-cuts easier, they should be defined per object. This means each creation
of an object causes the creation of a test aspect, whose point-cuts select only
join points of the object’s class.

1 public privileged aspect TestVectorDouble4Aspect extends TestAspect

2 {

3 public pointcut initMe() :

4 within(TestVectorDouble4);

5 [...]

6 }

Fig. 3. Aspect TestVectorDouble4Aspect (AOF) supporting class TestVectorDouble4
(OOF)

Using FlexTest, the tester must define a subaspect of the aspect TestAspect
(AOF) and activate it. This is done in two steps:

1. For each class under test, the tester must define a test case class and an
aspect adapting the test case class. The aspect class inherits the abstract



aspect TestAspect (AOF) and must override the abstract point-cut initMe
(cf. line 3 in Fig. 3). In Fig. 3, a fragment of the implementation of the aspect
TestVectorDouble4Aspect (AOF) is shown, adapting the test case class
TestVectorDouble4 (OOF) (see line 1). The aspect TestVectorDouble4-
Aspect (AOF) has privileged access to its adapted class and to the objects
of the IUT defined in this class.

2. The test case class is inherited from the abstract class TestCase (OOF). The
test case class, in the example the class TestVectorDouble4 (OOF), must
call initTestAspect to activate the aspect, in the example TestVector-
Double4Aspect (AOF).

1 public void testConstructor()

2 {

3 test1 = new VectorDouble4(1., 2., 3., 4.);

4 [...]

5 }

Fig. 4. Constructor test in TestVectorDouble4 (OOF)

Fig. 4 shows an example of a constructor test. The members of VectorDouble4
(IUT) are encapsulated. They cannot be accessed directly.

1 pointcut vector4ConstructorTest(double nX, double nY,

2 double nZ, double nW) :

3 call (VectorDouble4.new(double, double, double, double))

4 && args(nX, nY, nZ, nW);

5

6 after(double fX, double fY, double fZ, double fW)

7 returning(VectorDouble4 newConst) :

8 vector4ConstructorTest(fX, fY, fZ, fW)

9 {

10 check(((newConst.m_fX == fX) && (newConst.m_fY == fY)

11 && (newConst.m_fZ == fZ) && (newConst.m_fW== fW)));

12 }

Fig. 5. Aspect-oriented result check in TestVectorDouble4Aspect (AOF)

To gain access to the members of VectorDouble4 (IUT), we define a point-
cut for the construction of VectorDouble4 (IUT) objects and check the results
within an after advice (see Fig. 5, lines 3 and 6-8, respectively).



4.2 Quantification of test cases

A popular definition of aspect-oriented programming (AOP) [5] states that
“AOP is quantification and obliviousness”. In this section, we examine how
quantification can be used to improve the test process.

Testing can be a tedious task. It involves writing lots of test cases. Often,
test cases can be checked in a similar way, because they return similar results.

AOP quantification can express conditions that must hold for a set of method
calls in a certain test case. Grouping test cases gives them a context, which allows
an AOP language to check results of method calls in one advice.

1 public void testIsNormalPositive()

2 {

3 VectorDouble4 vec2 = new VectorDouble4(0, 1, 0, 0);

4 vec2.isNormal();

5 VectorDouble4 vec3= new VectorDouble4(1, 0, 0, 0);

6 vec3.isNormal();

7 [...]

8 }

9

10 public void testIsNormalNegative()

11 {

12 VectorDouble4 vec = new VectorDouble4(3, 2, 1, 5);

13 vec.isNormal();

14 [...]

15 }

Fig. 6. isNormal calls in TestVectorDouble4 (OOF)

In Fig. 6, the method isNormal is tested returning true if a vector is normal
and false otherwise. We define two contexts. In the first context, testIs-
NormalPositive, we expect all method calls to return true (lines 1-8). The
second context groups all method calls returning false (lines 10-15).

The results are selected by a point-cut defined using the cflowbelow state-
ment to select the context (see Fig. 7, lines 2-4).

Above, we describe the use of aspect-oriented programming as test oracle, but
it can also serve as test driver. Experiments have shown that other separations
of responsibilities are possible using the FlexTest framework. For example, we
can encapsulate all calls of isNormal in an aspect instead of implementing them
in the test case class. The next section shows another example the use of aspects
as a test driver.



1 [...]

2 pointcut vectorDouble4PositiveIsNormalTest() :

3 call (* VectorDouble4.isNormal())

4 && cflowbelow(call(* TestVectorDouble4.testIsNormalPositive()));

5

6 after() returning(boolean retValue) :

7 vectorDouble4PositiveIsNormalTest()

8 {

9 if (!retValue) makeError(thisJoinPoint);

10 }

Fig. 7. Testing the results of isNormal calls with the expected result true

4.3 Testing object hierarchies

In [6], subtyping is defined as follows: “If for each object o1 of type S there is
an object o2 of type T such that for all programs P defined in terms of T , the
behavior of P is unchanged when o1 is substituted for o2 then S is a subtype of
T .”

Type hierarchies in which subtype relations confirm to this criteria are called
Liskov-conform.

To check classes for Liskov-conformity, we have to run superclass test cases
on all subclasses, as proposed in [2]. Liskov-conform subclasses should pass all
test cases of their superclasses.

Designing test cases for subclasses raises the problem of considering test cases
of all superclasses. We can say that the concern of testing for Liskov-conformity
interferes with the concern of testing a single class.

Our solution encapsulates the object hierarchy test in one aspect. Thus, the
concern of testing for Liskov-conformity is separated from the concern of testing
a single subclass. New classes can be added to the hierarchy without changing
the hierarchy test module. Our solution selects the relevant test suites for each
class and the relevant classes for each test suite itself.

As mentioned earlier, AOP can be understood as quantification and obliv-
iousness. For this task, we need quantification to select the classes under test.
This selection must occur without the help of individual test classes and aspects.
Thus, the aspect-oriented part of the framework must be more active than in the
previous sections. It should not only be triggered to check the results of certain
test cases but acts as a test driver that is responsible for running a test suite on
a hierarchy of classes. The first instantiation of an object of the superclass or
one of its subclasses is intercepted to perform the superclass test suite.

For example, if we wish to test the method toString of all Vector (IUT)
subclasses we must apply the method testToString, given in Fig. 8, to all
subclasses of Vector (IUT). The object vecExample (lines 4, 6, 8) is the actual
object under test.



1 void testToString()

2 {

3 String strCompare = new String("");

4 for (int i = 0; i < _vecExample.getNoOfElements(); i++)

5 {

6 strCompare += _vecExample.getElement(i);

7 }

8 check(strCompare.equals(_vecExample.toString()));

9 }

Fig. 8. Testing the toString()-method for all sub-classes of Vector (IUT)

1 public abstract aspect TestCompleteInheritanceAspect

2 extends TestAspectEntity percflow(newInstance())

3 {

4 public pointcut newInstance() :

5 call (* TestSuite.run());

6 [...]

7 }

Fig. 9. Point-cut selecting join point to create a new instance of a hierarchy test aspect

All hierarchy test aspects in FlexTest are subaspects of TestCompleteIn-
heritanceAspect (AOF). An instance of this subaspect is assigned to each run
of a test suite. This is achieved by the code in Fig. 9 (lines 4+5).

1 public aspect TestVectorAspect extends TestCompleteInheritanceAspect

2 {

3 public pointcut newSubclass():

4 call (Vector+.new()) && within (TestVector*);

5 [...]

6 }

Fig. 10. Point-cut selecting the creation of a new class under test

We must now specify which subclasses should be tested by the hierarchy test
aspect. This is done by overriding the abstract point-cut newSubclass (line 3 in
Fig. 10), so that it selects the creation of certain subclasses in a test context.

Creations of subclass objects of Vector (IUT) that are located in classes of
a name starting with TestVector (OOF) are addressed by the point-cut in Fig.
10 (lines 3+4). TestCompleteInheritanceAspect (AOF) subaspects memorize



which classes they have already tested. Each class is tested only once for each
run of the test suite.

4.4 Convenience functionality

This section covers issues concerning the organization of a test framework and
its context. Some of these can be very neatly implemented using aspect-oriented
programming techniques.

Logging. Testing must be documented. A test framework must therefore offer
functionality to log the results of test runs following a certain pattern. For exam-
ple, the execution of all methods that are subclasses of class TestCase (OOF) or
all results of methods with the name pattern test* should be logged. Flexibility
is needed in the definition of logging.

Since logging is a classical example of the use of AOP, it is supported by our
test framework as well. Instead of scattering the logging calls over the code, they
are defined in a central module.

Failure Localization. It is not sufficient for a test framework to merely state
that a failure has occurred. A test framework must also locate which class and
which source code line have caused the failure.

JUnit [3] throws an exception and analyzes the stack traces for failure local-
ization. In our opinion, this is not a good solution because it abuses the exception
mechanism of Java. Exceptions should be thrown when a routine does not know
how to handle a situation and passes the responsibility to its caller. A failed
test case is normal behaviour in a test framework and using exceptions conflicts
with the application’s exceptions. This can lead to confusion with exceptions
originating from the application under test or with exceptions thrown in the
test framework.

The straight modular AOP variant is used to define a point-cut for all meth-
ods that check conditions for the test suite and create error strings in their
advices. These advices are able to reason about the point-cut shadow and even
know the line of code.

4.5 Other applications

Finally, we present two applications of AOP in the test framework that do not
specifically focus on testing. Assertions are part of quality assurance, and mock
objects are needed in unit testing in some situations.

Mock objects. Mock objects [7] mimic objects without having much function-
ality themselves. Their purpose is to check if the object under test communicates
in the right way with objects of the mimicked type. The use of mock objects may
be necessary, if the simulated object is not available at the time of testing or if it



takes to much time to test with all functionality of the mimicked object. Unlike
to stubs, mock objects are not just the original classes stripped of functionality.
They must provide some means of determining if other objects communicate
with the mimicked object in the right way.

Aspects can be mock objects without interfering with the code of the class
under test as follows:

– Each mock object is implemented by one aspect.
– The aspect contains a point-cut for each method of the mimicked class. Each

point-cut selects the call of one of its methods in the test context.
– The point-cuts are advised by around advices without a proceed statement.
– The mock object advice checks if it is called at the right time in the right

state with the right parameters. Otherwise, it logs an error.

The aspect-oriented mock object approach is especially useful if the insertion
of the mock object into a context is difficult. This can be the case if the object
to be mocked is, for example, determined in the method under test so that the
testing class is not able to influence this object or replace it with a mock object.
[8] discusses this problem at greater length.

Assertions. Assertions [2] involving pre- and postconditions are easy to imple-
ment in object-oriented programming languages at the beginning and the end
of each method. Class invariants, however, are hard to implement. They must
hold before and after methods of the actual object are called from other objects.
They are therefore scattered across the code if implemented conventionally.

Points at which the class invariant must hold are potential join points in
most AOP languages. Thus, inserting class invariants is a typical application for
aspect-oriented programming. An aspect selects all method calls of a class via
point-cuts and checks the class invariant for the class. With the cflowbelow-
statement, it is even possible to distinguish calls of other objects from those of
the actual object for which the invariant does not necessarily have to hold.

5 Related Work

A couple of research papers have investigated testing using aspect-oriented pro-
gramming techniques. The non-invasive integration of test code into the system
under test has been shown to be the main advantage here.

Most of the work in this area focuses on the popular language AspectJ.
Although our framework, too, is based on AspectJ, we see advantages in using
other aspect-oriented languages or platforms, like abc [9] that provides more
join point flexibility, or Object Teams that allows us to explicitly activate and
deactivate aspects at run-time. There is, however, no known work based on abc.
An instrumentation technique using Object Teams for integrating state-based
test oracles into the system under test is shown in [10]. The implementation of
state-based test oracles with AspectJ is shown in [11].



Aspect-oriented programming techniques are also used in [12–15]. The main
focus of these approaches is monitoring run-time behaviour on the system level.
Our approach concentrates on unit testing of methods, which means it has a
completely different granularity.

[8] proposes integrating mock objects using AspectJ. The work is based on
the JUnit test framework and has many similarities with our own work but we
have also considered many other applications where aspects can be helpful in
testing.

The realization of assertions with aspect-oriented programming techniques is
also proposed in [16–18]. In all cases, assertions are defined using a specification
language (OCL or JML). For example, in [18] JML specifications are transformed
into AspectJ code. In our approach, the tester defines assertions and test cases
using advices. The advantage here is that the tester does not have to learn a
new language in addition to AspectJ. However, directly written advice code is
less expressive than a specification language like JML.

In contrast to the presented related work, our approach is not confined to one
test application. We have investigated the use of aspect-oriented programming
techniques in different applications, resulting in a flexible test framework for unit
testing object-oriented systems.

6 Discussion

Our experiments with the FlexTest framework have shown that aspect-oriented
programming techniques are suitable for unit testing. Developing a new frame-
work instead of using JUnit enables us to enhance the framework flexibly with
aspect-oriented features. Our framework provides some solutions to typical unit
test problems.

We now go on to suggest some entry points for discussion and indicate a
potential direction for further research in this area.

First, we consider some disadvantages of our approach. As an implementa-
tion language for the aspect-oriented part of the framework, AspectJ requires
recompilation of the whole application with all test aspects. This adds extra
time to the compile process. Furthermore, each change of test aspects leads to a
recompilation of the whole application. But this is a specific AspectJ problem.
Other aspect-oriented languages that support load-time or run-time weaving
only require the compilation of test aspects.

Another disadvantage is due to the tester’s experience with aspect-oriented
programming. A tester who has no experience with AOP cannot use the FlexTest
framework.

The separation of the TestCase class and the TestAspect aspect distributes
test implementations to different modules. This seems to be a disadvantage, but
in our presented examples the separation is clear between test cases (TestCase)
and test oracle (TestAspect), and it naturally fits with mock object implementa-
tion. FlexTest supports the strict separation ot testing concern and application



concern. There is no need for a preparation of the classes under test. Also, sub-
concerns are separated by the use of AOP:

– Logging and failure localization are separated from testing.
– The concern of testing for Liskov-conformity is separated from the concern

of testing each individual class.

We believe that this kind of modularity helps in managing the complexity in
large test suites.

FlexTest provides solutions to some common test problems encountered when
unit testing object-oriented applications, like encapsulation bypassing. Aspect-
oriented programming provides a flexible instrumentation solution that can be
easily extended to other instrumentation problems. One of the main drawbacks -
the lack of instrumentation support per source-code statement - is compensated
for by the flexible and entensible join point language provided by the abc compiler
[9]. The abc compiler allows us to enhance the join point language so it even
supports instrumentation per statement.

Owing the modular structure of the FlexTest framework, it is easy to cus-
tomize the logging and failure localization functionality for test suites. To log in
a different manner or change the failure localization feature, one merely has to
edit few lines in a central aspect.

The pros and cons of our approach show that the main problem is the dif-
ficulty of expressing the functionality in an AOP language in an easy under-
standable manner. The complex expressions to select test method calls should
be replaced by expressions that are easier to read and understand. This means
that we have to change the AOP language.
Future work involves considering the following issues:

– Comparing the FlexTest framework with an object-oriented framework like
JUnit in a case study.

– Defining new keywords for use in test situations so that point-cut selections
are easier to read.

– Extending the point-cut language to a point where it is possible to check
loop invariants.

– Integrating the test concern into a language in which test classes and test
aspects are more closely related.

The new AOP language could be based on the extensible compiler abc, which
implements full AspectJ support but provides a flexible join point language.

References

1. Vösgen, M.: FlexTest Framework. http://swt.cs.tu-berlin.de/ mvoes-
gen/Stuff/flextest.zip (2005)

2. Binder, R.V.: Testing Object-Oriented Systems. Object Technology Series.
Addison-Wesley (1999)

3. JUnit: JUnit-Homepage. http://www.junit.org (2005)



4. AspectJ: AspectJ-Homepage. http://www.aspectj.org (2005)
5. Filman, R.E., Friedman, D.P.: Aspect-Oriented Programming is Quantification

and Obliviousness. In: Workshop on Advanced Separation of Concerns, 19th An-
nual ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), Minneapolis, Minnesota, USA (2000)

6. Liskov, B.: Data Abstraction and Hierarchy. In: Addendum to the proceedings
on Object-oriented programming systems, languages and applications, Orlando,
Florida, USA (1987) 17 – 34

7. Mackinnon, T., Freeman, S., Craig, P.: EndoTesting: Unit Testing with Mock
Objects. In: eXtreme Programming and Flexible Processes in Software Engineering
(XP), Cagliari, Italy (2000)

8. Lesiecki, N.: Test Flexibility with AspectJ and Mock Objects. http://www-
106.ibm.com/developerworks/java/library/j-aspectj2/ (2002)

9. Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhotak, J., Lhotak, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: abc: An Extensible AspectJ
Compiler. In: International Conference on Aspect-Oriented Software Development
(AOSD), Chicago, Illinois, USA (2005)

10. Sokenou, D., Herrmann, S.: Using Object Teams for State-Based Class Testing.
Technical report, Technische Universität Berlin, Fakultät IV - Elektrotechnik und
Informatik, Berlin, Germany (2004)

11. Bruel, J.M., Araújo, J., Moreira, A., Royer, A.: Using Aspects to Develop Built-In
Tests for Components. In: AOSD Modeling with UML Workshop, 6th International
Conference on the Unified Modeling Language (UML), San Francisco, California,
USA (2003)

12. Deters, M., Cytron, R.K.: Introduction of Program Instrumentation using As-
pects. In: Workshop of Advanced Separation of Concerns in Object-Oriented Sys-
tems, 16th Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA). ACM Sigplan Notices, Tampa, Florida, USA (2001)

13. Filman, R.E., Havelund, K.: Source-Code Instrumentation and Quantification of
Events. In: Workshop on Foundations of Aspect-Oriented Languages, 1st Intern
ational Conference on Aspect-Oriented Software Development (AOSD), Enschede,
Netherlands (2002)

14. Low, T.: Designing, Modelling and Implementing a Toolkit for Aspect-oriented
Tracing (TAST). In: Workshop on Aspect-Oriented Modeling with UML, 1st In-
ternational Conference on Aspect-Oriented Software Development (AOSD), En-
schede, Netherlands (2002)

15. Mahrenholz, D., Spinczyk, O., Schröder-Preikschat, W.: Program Instrumentation
for Debugging and Monitoring with AspectC++. In: Proceedings of The 5th IEEE
International Symposium on Object-oriented Real-time Distributed Computing
(ISORC), Crystal City, Virginia, USA (2002)

16. Richters, M., Gogolla, M.: Aspect-Oriented Monitoring of UML and OCL Con-
straints. In: AOSD Modeling With UML Workshop, 6th International Conference
on the Unified Modeling Language (UML), San Francisco, California, USA (2003)

17. Briand, L.C., Dzidek, W., Labiche, Y.: Using Aspect-Oriented Programming to
Instrument OCL Contracts in Java. Technical report, Carlton University, Ottawa,
Canada (2004)

18. Xu, G., Yang, Z., Huang, H.: A Basic Model for Aspect-Oriented Unit Testing.
www.cs.ecnu.edu.cn/sel/ harryxu/research/ papers/fates04 aspect-oriented


