
ConSequence - Model-Based Testing With State Machines and

Concatenated Sequence Diagrams

Stephan Weißleder Dehla Sokenou
Fraunhofer-Institute FIRST GEBIT Solutions

Kekuléstraße 7, 12489 Berlin, Germany Koenigsallee 75b, 14193 Berlin, Germany

stephan.weissleder@first.fraunhofer.de dehla.sokenou@gebit.de

1 Motivation

Model-based testing (MBT) offers several advantages
over traditional testing such as requirements formal-
ization, which can lead to early detection of incon-
sistencies, automation of test design, which usually
implies a significant decrease of test design costs, and
reduced test maintenance costs.

In this paper, we deal with two open issues of MBT:
First, coverage criteria are often used to measure test
quality and to steer automatic test generation. This
means that covering all specified structural elements
is the main focus of the generated test suite. As a
consequence, typical user behavior is seldom reflected
in the test suite, and the intention of single test cases
is often hard to understand for users. To solve this
issue, we propose to define typical user behavior as
sequences that are mapped on the behavioral model.
The second issue is the poor traceability from be-
havioral system models to functional requirements.
An intuitive approach to allow for traceability is to
annotate model elements with references to require-
ments [16, page 131]. This approach, however, suffers
from two draw-backs: The model becomes overloaded
and the integration of requirements links in the system
model has to be done manually. Instead, we propose
to use separate models for requirements and system
behavior and to link them automatically during test
generation. In this paper, we focus on sequence dia-
grams of the Unified Modeling Language (UML) [9]
as representations of typical single user behavior se-
quences, e.g., defined by functional requirements, and
on UML state machines as the representation of com-
plex system behavior.

Coverage criteria often drive automatic test gener-
ation in MBT. We are aware of only one requirements-
based coverage criterion called All-Requirements [16]
that requires to test each requirement. In addition,
we present an approach to concatenate transition se-
quences of requirements that drives test generation by
newly defined requirements-based coverage criteria.

In the following, we give an overview of related
work in Section 2, present the ConSequence approach
in Section 3 and case study results in Section 4, and
conclude in Section 5.

2 Related Work

Our work is related to a number of approaches. For
instance, in [16, page 131], the authors propose to ref-
erence requirements from single model elements - the
requirements are covered if the referencing model el-
ements are. Conformiq Designer [3] allows to attach
requirements to single model elements. In contrast,
we assume that requirements are not represented as
single model elements, but as interaction sequences.
SpecExplorer [6] allows for defining slices of a model
for test generation that can also contain references to
requirements. In contrast to our approach, however,
SpecExplorer does not allow the automatic combina-
tion of such slices based on corresponding coverage
criteria. State machines and sequence diagrams have
been used for automatic test generation before: For
instance, [12] generates test cases from state machines.
In [8] test cases are derived from contracts such as use
cases and sequence diagrams. In contrast to that, we
focus on combining both diagrams to generate test
cases. It is straight-forward that sequence diagrams
can describe single transition sequences of a state ma-
chine. [1] combines both diagrams to derive “reason-
ably” complete test models to achieve early results
for partially modeled systems. The papers [13] and
[7] show furthermore that the state machine’s start
states to execute sequence diagrams can be very im-
portant. We extend these approaches by identifying
transition sequences instead of start states that are
matching to sequence diagrams. In contrast to our
former work presented in [14], we introduce new cov-
erage criteria, describe a prototype implementation,
and show results from a case study.

3 The ConSequence Approach

We focus on concatenating sequences that potentially
represent functional requirements. Thus, we use the
terms typical interaction sequence and requirements
interchangeably for the rest of the paper.

First, we describe a meta model to express rela-
tions of functional requirements (Requirement) and
transition sequences of state machines (Transition-
Seq) depicted in Fig. 1: Each behavior specified by a

1



Requirement

TransitionSeq

mapped to

overlap

/ overlap

*

1

Figure 1: Meta model.

functional requirement can be mapped to several state
machine transition sequences depending, e.g., on the
start state. If the transition sequences of different re-
quirements overlap each other, then the corresponding
requirements are also overlapping.

3.1 Mapping

The task of the mapping is to identify the contexts of
the requirements in the behavioral model, i.e., to map
each requirement to transition sequences in the state
machine. State machine transitions are triggered by
incoming events. Thus, only the incoming message
events for the object described by the state machine
are extracted from the sequence diagram and mapped
to state machine transition sequences that are trig-
gered by the same sequence of events.

3.2 Overlap Identification

We define overlapping transition sequences using the
following terms for all transition sequences ts1 and
ts2 : Start state of any ts1 is the source state of the
first transition in ts1. End state of any ts1 is the
target state of the last transition in ts1. ts1 is a pre-
fix/postfix of ts2 iff ts2 starts/ends with the sequence
of transitions defined in ts1 and optionally contains
subsequent/preceding transitions. ts1 is part of ts2
iff the transitions in ts1 occur in ts2 at any place in
the same order, i.e., ts2 consists of the concatenation
of a prefix of ts2, ts1, and a postfix of ts2.

Based on these definitions, we define that two tran-
sition sequences overlap iff a) the start state of one
transition sequence is equal to the end state of the
other, b) there is a non-empty prefix of one transi-
tion sequence that is equal to a non-empty post-fix
of the other, or c) one transition sequence is part of
the other. The matching transitions that imply the
overlap are called the overlap. All mapped transition
sequences are related to each other if they overlap.
The corresponding requirements are also considered
overlapping if the mapped transition sequences do.

3.3 Concatenation and Test Generation

Based on the overlap relations between pairs of tran-
sition sequences, we can create an overlap graph cov-
ering all mapped transition sequences. Two overlap-
ping transition sequences are concatenated by creat-
ing a new sequence that first contains all transitions
of the preceding transition sequence and then all tran-
sitions of the subsequent transition sequence without

using the overlap of both transition sequences twice.
Concatenating non-overlapping transition sequences
is done via finding a path on the overlap graph from
one transition sequence to the other and concatenat-
ing all contained overlapping transition sequences. We
are aware that the success of the presented approach
depends on the quality of the given sequence dia-
grams. For instance, parts of the state machine may
be not covered by them and, consequently, pairs of
non-overlapping transition sequences cannot be con-
catenated using the overlap graph. In such cases,
transition sequence concatenation has to be done by
applying other techniques.

Test generation based on concatenating transition
sequences consists of several steps: 1) Concatenat-
ing all required transition sequences in the desired
order. 2) Concatenating the resulting transition se-
quence with the outgoing transition of the initial node
and a transition sequence that starts at the target
state of the initial state’s outgoing transition. The
resulting transition sequence is a connected path of
the state machine that starts at the initial state and
describes a possible system behavior that covers the
desired transition sequences and requirements, respec-
tively. 3) Validating the resulting path, i.e., checking
that all constraints regarding guard conditions and
effects on the contained transitions are valid.

3.4 Coverage Criteria

In this section, we describe coverage criteria for test
generation with the ConSequence approach:

All-Requirements is satisfied if for each require-
ment/sequence diagram, at least one of the mapped
transition sequences is covered by a test case.

All-Sequences is satisfied if for each require-
ment/sequence diagram, all mapped transition se-
quences have been covered by test cases at least once.

All-Requirements-Pairs is satisfied if for each or-
dered pair of requirements/sequence diagrams, at least
one of the mapped transition sequences are covered in
the order of the requirements.

All-Sequences-Pairs is satisfied if for each ordered
pair of requirements/sequence diagrams, all corre-
sponding transition sequences are covered in the order
of the requirements.

All-Sequences-Twice is satisfied if for each require-
ment/sequence diagram, all mapped transition se-
quences have been covered by test cases at least twice,
which also comprises transition loops.

The subsumption hierarchy for the presented cov-
erage criteria is shown in Fig. 2.

3.5 Prototype Implementation

ConSequence [19]1 is implemented as a Java-based
Eclipse plugin that can read EMF-based model de-
scriptions defined by the Eclipse UML plugins and
OCL conditions. State machine, sequence diagrams

1not publicly available, yet - we’ll present prototype at TAV



All-Requirements

All-Sequences

All-Sequence-Pairs

All-Requirements-Pairs
All-Sequence-Twice

Figure 2: Requirements-based subsumption hierarchy.

that should be used for test generation, coverage cri-
teria to satisfy, output file, and test generator can be
selected. Coverage criteria are transformed into test
goals. For each yet unsatisfied test goal, a test case is
generated. Unsatisfiable test goals are reported. Re-
dundant test cases are removed from the test suite,
i.e., test cases for which all test goals are covered by
other created test cases. For generating test cases,
the tool relies on concatenating transition sequences
and computing valid input-output data with the con-
straint solver Choco [15]. Supported output formats
are JUnit 3.8 and plain text. As test oracle, state
invariants derived from state machine are used.

4 Case Study

The case study is based on models describing the be-
havior of an automated teller machine (ATM). One
state machine describes the behavior of the system
and 25 sequence diagrams describe single interaction
sequences. The described process consists of entering
the credit card, validating the card, and checking the
amount or withdrawing money. The interested reader
can find the state machine in [14].

In the following, we describe our experiments to
determine the impact of the defined coverage criteria.
For our case study, we manually created a SUT imple-
mentation of the ATM. For each test suite generated
for a certain coverage criterion, we run mutation anal-
ysis with Jumble [17] on this SUT implementation. In
mutation analysis, faulty versions of the SUT are cre-
ated by injecting single faults. Each faulty version is
called a mutant. If this mutant is detected by a test
suite, the mutant is said to be killed. The ratio of
killed to all mutants is the mutation score. The cou-
pling effect [4] states that most of the more complex
faults are also covered by the simple ones [10, 11].

We evaluate the effects of 1) the test suites gener-
ated with ConSequence, 2) structure-based coverage
criteria with corresponding test suites generated by
ParTeG [18], and 3) combining both test suites.

4.1 Requirements-Based Coverage

In this section, we analyse the mutation score for
the test suites generated for the presented five
requirements-based coverage criteria (RBC). Table 1

Coverage Criterion Number of Number of Mutation
Test Cases System Calls Score

All-Requirements 19 165 69/87
All-Sequences 23 159 72/87
All-Req.-Pairs 317 5411 73/87

All-Sequence-Pairs 369 6277 73/87
All-Sequence-Twice 23 440 73/87

Table 1: RBC results of mutation analysis.

Coverage Criterion Number of Number of Mutation
Test Cases System Calls Score

All-States 3 15 39/87
All-Transitions 11 69 72/87

MCC 12 76 72/87

Table 2: SBC results of mutation analysis.

shows the test suite size measured as the number
of test cases, the number of system calls, and the
mutation score of the mutation analysis. As ex-
pected, All-Requirements performs worst of all cov-
erage criteria and All-Sequences performs better than
All-Requirements without much effort overhead. All-
Requirements-Pairs and All-Sequence-Pairs perform
even better than All-Sequences. Their execution
costs, however, increase dramatically: more than 300
test cases with more than 5000 system calls for All-
Requirements-Pairs and All-Sequence-Pairs calls com-
pared to just 23 test cases with only 159 system calls
for All-Sequences! This effort increase was expected:
The number of test goals for any of these two coverage
criteria rises quadratically compared to the number of
given requirements. These results were our motivation
to consider coverage criteria with lower effort like All-
Sequences-Twice that reach a high mutation score at
considerable costs.

4.2 Structure-Based Coverage

In this section, we describe the application of
ParTeG on the provided state machine to create
test suites that satisfy structural coverage criteria
(SBC) [16]. We chose the coverage criteria All-States,
All-Transitions, Decision Coverage, MC/DC [2], and
Multiple Condition Coverage (MCC). Since the pre-
sented system model contains no complex guard con-
ditions, the results for Decision Coverage, MC/DC,
and MCC are the same. In the presented statistics,
we just name MCC. Table 2 shows the results.

As expected, All-States performs worst of all cov-
erage criteria. All-Transitions detects a fair amount
of mutants with a low number of test cases. The
three coverage criteria Decision Coverage, MC/DC,
and MCC detected 72 mutants but used only 12 test
cases. Compared to All-Sequences, this is the same
mutation score for half of the test cases.

4.3 Comparison and Combination

In this section, we compare the results of the test
suites generated by ConSequence and ParTeG. We are



Coverage Criterion Number of Number of Mutation
Test Cases System Calls Score

MCC +
All-Sequences 35 235 74/87

MCC +
All-Sequence-Pairs 381 6353 75/87

MCC +
All-Sequence-Twice 35 516 75/87

Table 3: Combination results of mutation analysis.

aware that this comparison strongly depends on the
number and quality of the given models. Nevertheless,
for this case study we can draw first conclusions: The
obvious statement is that requirements-based cover-
age criteria can be able to reach a high mutation score
and structural-based coverage criteria can achieve still
good mutation scores with less effort. The next result
is that there are benefits of applying both kinds of
coverage criteria. The results are shown in Table 3.

The mutants detected by both approaches do not
match completely. As a result, the combination of test
suites generated by the two mentioned approaches re-
sult in even stronger test suites: For instance, combin-
ing MCC and All-Sequence-Twice detects 75 mutants
with only 35 test cases. Given the mutation scores of
the single test suites, we consider this improvement
substantial. Even MCC and All-Sequences with the
same number of test cases but half the number of sys-
tem calls of MCC and All-Sequence-Twice performs
better than the single test suites. As described in [5],
the combination of both test generation approaches at
the test goal level can even lead to smaller test suites.

5 Conclusion and Outlook

In this paper, we presented a new approach to trace-
ability in model-based testing based on concatenation
of requirements and newly defined corresponding cov-
erage criteria. We presented the tool ConSequene and
results of a case study. The application of our ap-
proach can result in stronger test suites than the ones
generated to satisfy structural coverage criteria. As a
major result, the combination of requirements-based
and structural-based coverage criteria results in even
stronger test suites.

There are several points to discuss. For instance,
the quality of the presented test generation approach
strongly depends on the quality of the given require-
ments. One way to deal with this problem is con-
ducting more case studies. Furthermore, since our
approach is focused on satisfying single test goals,
the presented test generation approach can also be
combined with other structural coverage criteria at
the test goal level. This is conform to our major
result that the combination of structure-based and
requirements-based coverage criteria is beneficial.

As future work, we plan to use the described con-
nection of sequence diagrams and state machines for
integration testing: The sequence diagrams already
describe integration of several components. They can

also be used to combine state machines of the inter-
acting objects. Our second aim is to extend ConSe-
quence so that it can also deal with parts of the state
machine that are not covered by requirements, e.g.,
by a combination with ParTeG on test goal level.

References
[1] A. Bertolino, E. Marchetti, and H. Muccini. Introducing a

Reasonably Complete and Coherent Approach for Model-
based Testing. Electronic Notes in Theoretical Computer
Science, 116:85–97, 2005.

[2] J. J. Chilenski and S. P. Miller. Applicability of Modi-
fied Condition/Decision Coverage to Software Testing. In
Software Engineering Journal, Issue, volume 9, pages 193–
200, September 1994.

[3] Conformiq. Designer 4.2. http://www.conformiq.com/.

[4] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on
Test Data Selection: Help for the Practicing Programmer.
Computer Journal, 11(4):34–41, 1978.

[5] M. Friske, H. Schlingloff, and S. Weißleder. Composition
of Model-based Test Coverage Criteria. In MBEES’08:
Model-Based Development of Embedded Systems, 2008.

[6] Microsoft. SpecExplorer.
http://research.microsoft.com/en-
us/projects/specexplorer/, 2010.

[7] R. Nagy. Bedeutung von Ausgangszuständen beim Testen
von objektorientierter Software. In CoMaTech’04, Trnava,
Slowakei, 2004.

[8] C. Nebut, F. Fleurey, Y. L. Traon, and J.-M. Jézéquel. Re-
quirements by Contracts allow Automated System Testing.
In ISSRE’03: Proceedings of the 14th. IEEE International
Symposium on Software Reliability Engineering, pages 17–
21, 2003.

[9] Object Management Group. Unified Modeling Language
(UML), version 2.2. http://www.uml.org, 2009.

[10] A. Offutt. The Coupling Effect: Fact or Fiction? SIG-
SOFT Softw. Eng. Notes, 14(8):131–140, 1989.

[11] A. J. Offutt. Investigations of the Software Testing Cou-
pling Effect. ACM Transactions on Software Engineering
and Methodology, 1(1):5–20, 1992.

[12] J. Offutt and A. Abdurazik. Generating Tests from UML
Specifications. In R. France and B. Rumpe, editors,
UML’99 - The Unified Modeling Language. Beyond the
Standard. Second International Conference, Fort Collins,
CO, USA, October 28-30. 1999, Proceedings, volume 1723,
pages 416–429. Springer, 1999.

[13] D. Sokenou. Generating Test Sequences from UML Se-
quence Diagrams and State Diagrams. In INFORMATIK
2006: Informatik für Menschen - Band 2, GI-Edition:
Lecture Notes in Informatics (LNI), P-94, pages 236–240.
Gesellschaft für Informatik, 2006.

[14] D. Sokenou and S. Weißleder. Combining Sequences
and State Machines to Build Complex Test Cases. In
MoTiP’09: Workshop on Model-Based Testing in Prac-
tice, June 2009.

[15] The Choco Team. Choco Solver 2.1.0.
http://choco.emn.fr/, 2009.

[16] M. Utting and B. Legeard. Practical Model-Based Testing:
A Tools Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2006.

[17] M. Utting, L. Trigg, J. G. Cleary, A. Irvine, and
T. Pavlinic. Jumble. http://jumble.sourceforge.net/, 2007.

[18] S. Weißleder. ParTeG (Partition Test Generator).
http://parteg.sourceforge.net.

[19] S. Weißleder and D. Sokenou. ConSequence.
http://www.model-based-testing.de/tools/consequence,
2010.


