
Automatic Test Case Generation from UML Models and
OCL Expressions

Stephan Weißleder, Dehla Sokenou

weissled@informatik.hu-berlin.de, dehla.sokenou@gebit.de

Abstract: In this paper, we discuss one approach of automated test case generation
from UML models and OCL expressions. We show how to use UML and OCL to
support several coverage criteria. We introduce our current prototype implementation,
compare it to commercial tools, and sketch shortcomings and further development.

1 Introduction

Testing is the primary means to detect faults in a system under test (SUT), e.g. a software
product. Modelling languages like the Unified Modeling Language (UML) [Gro05] are
means to design tests. There is established tool support for model-based test generation
based on UML. For instance, Rhapsody ATG [Tel] supports test generation for the target
language C++. Leirios Test Designer [Lei] supports a subset of the Object Constraint Lan-
guage (OCL). We argue that the tool support of model-based testing could be improved.
The quality of test suites is often measured with coverage criteria (although there is no
proof of their effectiveness). We argue that the test generation support for boundary-based
coverage criteria [KLPU04] could also be improved. For instance, AETG [Tec] depends
on user-defined partition boundaries instead of deriving them from the model.

Our approach is to automatically generate test cases from UML state machines, UML class
diagrams, and OCL expressions to satisfy boundary-based coverage criteria. We correlate
OCL pre-/postconditions of operations and guard conditions of state machines to derive
test data input partitions automatically [WS07a]. This allows to generate test suites that
satisfy, e.g., a combination of Multi-Dimensional [KLPU04] (each variable takes each
boundary value of each partition at least once) and MC/DC [UL06] (every condition in
a decision in the program has taken on each possible outcome at least once, and each
condition has been shown to affect that decision outcome independently) (see [WS08]).

2 Test Case Generation from UML and OCL

UML is a widely accepted means to express models used in model-based test generation.
Since OCL constraints can express conditions that can not be phrased in UML, OCL is
often used together with UML models for test case generation. We shortly sketch previous



approaches to use UML and OCL: One approach is to use OCL as an additional test oracle
(compare e.g. [Sok06]). In this case, OCL expressions are simply transformed to the lan-
guage of the SUT. Another approach is to relate pre-/postconditions of one operation and
derive behavioural information from static models [BBH02]. A more advanced approach
is presented by Leirios [Lei], that combines different OCL conditions by the control flow
information of a state machine. Equations in postconditions are interpreted as assignments
in order to allow a symbolic execution of the model. However, this approach supports only
a subset of OCL. For instance, our approach additionally considers inequations and a wider
set of logical expressions (e.g. ”or”, ”not”) in postconditions.

The basic idea of relating OCL conditions is that postconditions attached to a transition
affect the satisfaction of subsequent guard conditions. Consequently, it is possible to iden-
tify dependencies between them in the control-flow of state machines. A classification of
the elements comprised in postconditions allows to define the attributes of a postcondition,
whose values are changing [WS07a]. This allows to correlate certain elements of guard
conditions and preconditions to corresponding elements of postconditions. As a result of
this approach, guard expressions can be transformed into conditions for input parameters.
These resulting conditions are interpreted as partition boundaries.

2.1 Prototype Implementation

We implemented our approach in an Eclipse-based tool called ParTeG [Wei]. This tool
checks all paths from the initial state of the UML state machine until a loop is reached.
Every time the tool encounters, e.g., a guard condition, it searches the path backwards to
find a postcondition that affects the outcome of this guard condition. The postconditions
describe, e.g., the effect of input parameters on attribute values. This allows to create a
connection between the values of test input parameters and the control flow within the state
machine. The constraints on test input parameters are interpreted as equivalence classes
and the concrete values are selected close to the corresponding boundaries (see Fig. 1).

Figure 1: Basic idea of the test generation process.



2.2 Coverage Criteria

Coverage criteria are the primary means to measure the quality of a test suite. Never-
theless, there is no proof for a relationship between satisfied coverage criteria and the
number of identified faults. This is fortified by the success of random testing compared
to model-based testing, which brings up the question for cost efficiency of model-based
testing [Pre06]. Consequently, some approaches combine random testing and the mere
observation of coverage criteria. For instance, Rhapsody ATG [Tel] follows the approach
of generating test cases and measuring the satisfied coverage. Although our current ap-
proach is not random, we also observe the percentage of satisfied coverage criteria instead
of enforcing it. However, we plan to change this strategy to enforce the satisfaction of
each part of a coverage criterion (test goal).

In addition to satisfying just one coverage criterion, the satisfaction of a combination of
different coverage criteria seems to be promising [WS08]. Since ParTeG is already fo-
cussed on boundary coverage, it allows to combine, e.g., boundary-based coverage criteria
and control-flow-based coverage criteria.

2.3 Comparison to Commercial Tools

We compared our prototype implementation to already existing commercial tools. In this
context, we used mutation analysis with a subset of the “sufficient mutation operators”
defined in [OLR+96]. Since our approach is focused on the deduction of test input data
partitions, the test suites generated by ParTeG reached a higher number of killed mutants
than Rhapsody ATG and Leirios Test Designer [WS07b].

Most tools for automatic test generation are fixed on satisfying certain coverage criteria.
Since each coverage criterion has its eligibility for a certain application field and a certain
required safety level, it would desirable to let the user choose the coverage criterion to
satisfy. ParTeG allows the user to choose from a set of coverage criteria, which makes it
applicable for a broader set of possible application environments.

2.4 Shortcomings and Further Development

The results obtained from the comparisons to commercial tools only hold for examples
with few loops and a few conditions based on the repetition of executing these loops. This
is caused by the internal structure used for deriving test cases: a tree that describes possible
test execution paths. In order to avoid infinite tree size, the length of the paths has to be
limited. This results in problems for covering conditions whose satisfaction depends on
certain executed loops in a path (e.g., a cash card that is only retained after entering a false
PIN three times). Since this leads to suboptimal coverage, we aim at a different approach:
Instead of creating a tree, we stick to the graph structure of the state machine. Based
on the coverage criteria to satisfy, we define certain test goals like a set of transitions for



transition coverage or a set of assignments of a condition’s attribut values for MC/DC.
Following that, we iterate through all test goals and apply our approach of deducing test
input values to a test case generation algorithm like presented in [OA99] or [Sok06].

To our knowledge, ParTeG is the first tool that generates equivalence classes for test input
parameters from UML and OCL.

Acknowledgements. This work was supported by grants from the DFG (German Re-
search Foundation, research training group METRIK).

References

[BBH02] M. Benattou, J.-M. Bruel, and N. Hameurlain. Generating Test Data from OCL Speci-
fication. In WITUML’02, 2002.

[Gro05] Object Management Group. Unified Modeling Language (UML), version 2.0, 2005.

[KLPU04] N. Kosmatov, B. Legeard, F. Peureux, and M. Utting. Boundary Coverage Criteria for
Test Generation from Formal Models. In ISSRE ’04, pages 139–150. IEEE, 2004.

[Lei] Leirios. LTG/UML. http://www.leirios.com.

[OA99] J. Offutt and A. Abdurazik. Generating Tests from UML Specifications. In UML’99,
pages 416–429, 1999.

[OLR+96] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An experimental determi-
nation of sufficient mutant operators. ACM Transactions on Software Engineering and
Methodology, pages 99–118, 1996.

[Pre06] A. Pretschner. Zur Kosteneffektivität des modellbasierten Testens. In MBEES’06: Mod-
ellbasierte Entwicklung eingebetteter Systeme, pages 85–94, 2006.

[Sok06] D. Sokenou. Generating Test Sequences from UML Sequence Diagrams and State Dia-
grams. In INFORMATIK 2006, pages 236–240, 2006.

[Tec] Telcordia Technologies. AETG. http://aetgweb.argreenhouse.com.

[Tel] Telelogic. Rhapsody Automated Test Generation. http://www.telelogic.com.

[UL06] M. Utting and B. Legeard. Practical Model-Based Testing: A Tools Approach. Morgan
Kaufmann Publishers Inc., 2006.

[Wei] S. Weißleder. ParTeG (Partition Test Generator). http://parteg.sourceforge.net.

[WS07a] S. Weißleder and B.-H. Schlingloff. Automatic Test Generation from Coupled UML
Models using Input Partitions. In MoDeVVa, 2007.

[WS07b] S. Weißleder and B.-H. Schlingloff. Deriving Input Partitions from UML Models for
Automatic Test Generation. In LNCS Volume on Models in Software Engineering (MoD-
ELS 2007), 2007.

[WS08] S. Weißleder and B.-H. Schlingloff. Quality of Automatically Generated Test Cases
based on OCL Expressions. In ICST, April 2008.


