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Motivation (1) 

• open issue: testing object-oriented systems 

• problems: lack of specification, test code integration 

• UML widely used for modeling and specifying object 
oriented systems 

• artifacts created in the analysis and design phases provide a 
good foundation for model-based testing 

• different views are modeled by using different diagram types 

 our idea: combining several diagram types for testing 

• test case selection based on UML diagrams 

• main information from sequence diagrams 

• additional information from state diagrams (UML statecharts) 
and OCL constraints 
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Motivation (2) 

• test code integration often expensive 

• test code needs privileged access to the SUT 

• version control 

 our idea: using dynamic aspects for testing 

• code is integrated in non-invasive manner 

• aspects have privileged access to the adapted system 
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Example: Bank Account 

isActive(): boolean 
isBlocked(): boolean 
isClosed(): boolean 

getBalance(): int 
activate() 
block() 

unblock() 
close() 

deposit(amount: int) 
withdraw(amount: int) 

status: int 
balance: int 

Account 
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activate 
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block 

unblock 

withdraw 
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deposit 

protocol state machine 
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Protocol State Machines 

 

• life cycle of objects 

• call events 

• no associated actions 

• implicit preconditions 

• observer methods 
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Test Case Generation 

 based on sequence diagrams and UML statecharts 

• sequence diagrams 

• typical message sequences 

• communication between objects  

• statecharts (protocol state machines) 

• life cycle of objects 

• each sequence diagram = 1 test case  

• additional information from statecharts 

• initialization of test sequences 

• (test oracle) 
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Test Case Generation: Example 

a:Account x:Bank 

withdraw 

deposit 

b:Account 

close 

blocked 

active 

open 

closed 

activate 

close 

block 

unblock 

withdraw 
deposit 

deposit 

TF 1) x{new}; a{new}; a.activate; b{new}; b.activate; x.close 

TF 2) x{new}; a{new}; a.activate; b{new}; b.activate; b.block; x.close 

sd1 

close 

withdraw 

close 

deposit 

withdraw 

active 
close 

deposit 

active 

deposit 

blocked 

close 

withdraw 



Dehla Sokenou - TU Berlin - Softwaretechnik 
A UML-Based Testing Approach 

10 

Test Oracle 

• statecharts 

• implicit pre and post conditions 

• valid states and transitions 

• OCL constraints 

• explicit pre and post conditions 

• 2 variants of combination 

1. integration of OCL pre and post conditions into statecharts 

2. derivation of pre and post conditions from statecharts and 
combination with explicit OCL constraints 
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Test Oracle: Example (1)  

blocked 

active 

open 

closed 

activate 

close 

block 

unblock 

withdraw 
deposit 

deposit 
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credit 
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withdraw 
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withdraw 
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Test Oracle: Example (2) 

• OCL: pre and post condition 

 

context 
Account::withdraw(amount:int) 

      pre:   true 

      post: self.balance =  

  self.balance@pre - amount 

active 

credit 

debit 

withdraw 

deposit 

deposit 
withdraw 

withdraw  
deposit 

• protocol state machine 
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Test Oracle: Example (3) 

• OCL: pre and post condition 

 

context 
Account::withdraw(amount:int) 

      pre:   true 

      post: self.balance =  

  self.balance@pre - amount 

• statechart: pre and post condition 

 

context    
Account::withdraw(amount:int) 

     pre:   self.isActive and  

      (self.balance >=0 or self.balance <0) 

     post: ((self.balance@pre >= 0               

              implies self.balance >= 0 or 
             self.balance < 0)      

           and 

  (self.balance@pre < 0 

       implies self.balance < 0)) 

     and self.isActive  
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Test Oracle: Example (4) 

• statechart: derivation of pre and post condition 

     

                context Account::withdraw(amount:int) 

              pre:   self.isActive and  

                                                                (self.balance >=0 or self.balance <0) 

             post: ((self.balance@pre >= 0 

                                     implies self.balance >= 0 or 

                   self.balance < 0)      

       and 

                                             (self.balance@pre < 0 

                                                        implies self.balance < 0)) 

         and self.isActive 

 target 
 states 

active 

credit 

debit 

withdraw 

deposit 

deposit 
withdraw 

withdraw  
deposit 

 source 
states 

state invariants 
of source states 
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Test Oracle: Example (5) 

• resultant pre and post condition 

    context Account::withdraw(amount:int) 

  pre: true and self.isActive and … 

  post: ((self.balance =  

   self.balance@pre - amount) 

  and  

                (self.balance@pre >= 0 

           implies self.balance >= 0 or 

         self.balance < 0) and 

           (self.balance@pre < 0 

           implies self.balance < 0))) 

                and self.isActive 

 

OCL 
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Test Code Integration (1) 

• integration of test oracles into the SUT 

• aspect-oriented language: Object Teams 

• generation of executable statecharts 

• compilation of OCL constraints 

• advantages 

• source and byte code of SUT not changed  

• aspects as roles with own state 

• tight coupling between aspect and role object 

• observer pattern already implemented (method calls are 
forwarded to aspect) 

• privileged access to the SUT 
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Test Code Integration (2) 

• executable statechart with Object Teams 

• statechart as role of object under test 

• one team for each statechart level 

• dynamic aspect activation for statechart hierarchy 
implementation 

 

 

 

 

 

• more teams for OCL constraints and logging 

 

object  
under test 

statechart 

notify event calls 

check state 
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Test Code Integration: Example 

team class Account_OCL { 

    class Account_Role playedBy Account {   

     Account obj_$AT_$PRE; 

     abstract boolean isActive(); isActive -> isActive; /* CallOutBinding */ 

                                           // also for clone and other query methods 

     pre_withdraw <- before withdraw;           /* CallInBinding */ 

     post_withdraw <- after withdraw; 

     void pre_withdraw(int amount) {                       /* Implementation */ 

  obj_$AT_$PRE = clone();  

  if (!pre) { // test failed } } 

     void post_withdraw(int amount) {    } 

} }                       
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Summary 

• combination of different diagram types 

• test case generation from sequences and statecharts 

• test oracle derivation from statecharts and OCL constraints 

• information collected from different views 

• independent test oracle 

•  easy extension by using other diagram types  

• aspect-oriented integration of test oracle 

• non-invasive integration 

• privileged access  
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Outlook 

• integration of additional UML diagram types 

• class diagram 

• activity diagram 

• additional OCL constraints (beside pre, post conditions, 
invariants) 

• derivation of test data from UML models 

• use of efficient techniques 

• e.g. DresdenOCL 

• industrial case study  


