
A UML-Based Testing Approach
Using Sequence Diagrams, Statecharts, and OCL Constraints

Dehla Sokenou

TU Berlin

Softwaretechnik

Dehla Sokenou - TU Berlin - Softwaretechnik
A UML-Based Testing Approach

2

test oracle

test oracle
integration

executable
test oracle

Overview of the Test System

test data

test
driver

test
execution

test
verdict

UML
model

test data
generation

test oracle
(UML)

test oracle
preparation

abstract
test cases

test case
generation

Dehla Sokenou - TU Berlin - Softwaretechnik
A UML-Based Testing Approach

3

Agenda

• motivation

• UML-based testing

• test case generation

• test oracle

• aspects used for testing

• summary and outlook

Dehla Sokenou - TU Berlin - Softwaretechnik
A UML-Based Testing Approach

4

Motivation (1)

• open issue: testing object-oriented systems

• problems: lack of specification, test code integration

• UML widely used for modeling and specifying object
oriented systems

• artifacts created in the analysis and design phases provide a
good foundation for model-based testing

• different views are modeled by using different diagram types

 our idea: combining several diagram types for testing

• test case selection based on UML diagrams

• main information from sequence diagrams

• additional information from state diagrams (UML statecharts)
and OCL constraints

Dehla Sokenou - TU Berlin - Softwaretechnik
A UML-Based Testing Approach

5

Motivation (2)

• test code integration often expensive

• test code needs privileged access to the SUT

• version control

 our idea: using dynamic aspects for testing

• code is integrated in non-invasive manner

• aspects have privileged access to the adapted system

Dehla Sokenou - TU Berlin - Softwaretechnik
A UML-Based Testing Approach

6

Example: Bank Account

isActive(): boolean
isBlocked(): boolean
isClosed(): boolean

getBalance(): int
activate()
block()

unblock()
close()

deposit(amount: int)
withdraw(amount: int)

status: int
balance: int

Account

blocked

active

open

closed

activate

close

block

unblock

withdraw
deposit

deposit

protocol state machine

Dehla Sokenou - TU Berlin - Softwaretechnik
A UML-Based Testing Approach

7

Protocol State Machines

• life cycle of objects

• call events

• no associated actions

• implicit preconditions

• observer methods

blocked

active

open

closed

activate

close

block

unblock

withdraw
deposit

deposit

Dehla Sokenou - TU Berlin - Softwaretechnik
A UML-Based Testing Approach

8

Test Case Generation

 based on sequence diagrams and UML statecharts

• sequence diagrams

• typical message sequences

• communication between objects

• statecharts (protocol state machines)

• life cycle of objects

• each sequence diagram = 1 test case

• additional information from statecharts

• initialization of test sequences

• (test oracle)

Dehla Sokenou - TU Berlin - Softwaretechnik
A UML-Based Testing Approach

9

Test Case Generation: Example

a:Account x:Bank

withdraw

deposit

b:Account

close

blocked

active

open

closed

activate

close

block

unblock

withdraw
deposit

deposit

TF 1) x{new}; a{new}; a.activate; b{new}; b.activate; x.close

TF 2) x{new}; a{new}; a.activate; b{new}; b.activate; b.block; x.close

sd1

close

withdraw

close

deposit

withdraw

active
close

deposit

active

deposit

blocked

close

withdraw

Dehla Sokenou - TU Berlin - Softwaretechnik
A UML-Based Testing Approach

10

Test Oracle

• statecharts

• implicit pre and post conditions

• valid states and transitions

• OCL constraints

• explicit pre and post conditions

• 2 variants of combination

1. integration of OCL pre and post conditions into statecharts

2. derivation of pre and post conditions from statecharts and
combination with explicit OCL constraints

Dehla Sokenou - TU Berlin - Softwaretechnik
A UML-Based Testing Approach

11

Test Oracle: Example (1)

blocked

active

open

closed

activate

close

block

unblock

withdraw
deposit

deposit
active

credit

debit

withdraw

deposit

deposit
withdraw

withdraw
deposit

Dehla Sokenou - TU Berlin - Softwaretechnik
A UML-Based Testing Approach

12

Test Oracle: Example (2)

• OCL: pre and post condition

context
Account::withdraw(amount:int)

 pre: true

 post: self.balance =

 self.balance@pre - amount

active

credit

debit

withdraw

deposit

deposit
withdraw

withdraw
deposit

• protocol state machine

Dehla Sokenou - TU Berlin - Softwaretechnik
A UML-Based Testing Approach

13

Test Oracle: Example (3)

• OCL: pre and post condition

context
Account::withdraw(amount:int)

 pre: true

 post: self.balance =

 self.balance@pre - amount

• statechart: pre and post condition

context
Account::withdraw(amount:int)

 pre: self.isActive and

 (self.balance >=0 or self.balance <0)

 post: ((self.balance@pre >= 0

 implies self.balance >= 0 or
 self.balance < 0)

 and

 (self.balance@pre < 0

 implies self.balance < 0))

 and self.isActive

Dehla Sokenou - TU Berlin - Softwaretechnik
A UML-Based Testing Approach

14

Test Oracle: Example (4)

• statechart: derivation of pre and post condition

 context Account::withdraw(amount:int)

 pre: self.isActive and

 (self.balance >=0 or self.balance <0)

 post: ((self.balance@pre >= 0

 implies self.balance >= 0 or

 self.balance < 0)

 and

 (self.balance@pre < 0

 implies self.balance < 0))

 and self.isActive

 target
 states

active

credit

debit

withdraw

deposit

deposit
withdraw

withdraw
deposit

 source
states

state invariants
of source states

Dehla Sokenou - TU Berlin - Softwaretechnik
A UML-Based Testing Approach

15

Test Oracle: Example (5)

• resultant pre and post condition

 context Account::withdraw(amount:int)

 pre: true and self.isActive and …

 post: ((self.balance =

 self.balance@pre - amount)

 and

 (self.balance@pre >= 0

 implies self.balance >= 0 or

 self.balance < 0) and

 (self.balance@pre < 0

 implies self.balance < 0)))

 and self.isActive

OCL

statechart

active

credit

debit

withdraw

deposit

deposit
withdraw

withdraw
deposit

Dehla Sokenou - TU Berlin - Softwaretechnik
A UML-Based Testing Approach

16

Test Code Integration (1)

• integration of test oracles into the SUT

• aspect-oriented language: Object Teams

• generation of executable statecharts

• compilation of OCL constraints

• advantages

• source and byte code of SUT not changed

• aspects as roles with own state

• tight coupling between aspect and role object

• observer pattern already implemented (method calls are
forwarded to aspect)

• privileged access to the SUT

Dehla Sokenou - TU Berlin - Softwaretechnik
A UML-Based Testing Approach

17

Test Code Integration (2)

• executable statechart with Object Teams

• statechart as role of object under test

• one team for each statechart level

• dynamic aspect activation for statechart hierarchy
implementation

• more teams for OCL constraints and logging

object
under test

statechart

notify event calls

check state

Dehla Sokenou - TU Berlin - Softwaretechnik
A UML-Based Testing Approach

18

Test Code Integration: Example

team class Account_OCL {

 class Account_Role playedBy Account {

 Account obj_$AT_$PRE;

 abstract boolean isActive(); isActive -> isActive; /* CallOutBinding */

 // also for clone and other query methods

 pre_withdraw <- before withdraw; /* CallInBinding */

 post_withdraw <- after withdraw;

 void pre_withdraw(int amount) { /* Implementation */

 obj_$AT_$PRE = clone();

 if (!pre) { // test failed } }

 void post_withdraw(int amount) { }

} }

Dehla Sokenou - TU Berlin - Softwaretechnik
A UML-Based Testing Approach

19

Summary

• combination of different diagram types

• test case generation from sequences and statecharts

• test oracle derivation from statecharts and OCL constraints

• information collected from different views

• independent test oracle

• easy extension by using other diagram types

• aspect-oriented integration of test oracle

• non-invasive integration

• privileged access

Dehla Sokenou - TU Berlin - Softwaretechnik
A UML-Based Testing Approach

20

Outlook

• integration of additional UML diagram types

• class diagram

• activity diagram

• additional OCL constraints (beside pre, post conditions,
invariants)

• derivation of test data from UML models

• use of efficient techniques

• e.g. DresdenOCL

• industrial case study

