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Abstract: Model-based testing is a promising technique for quality assurance. In this
paper, we present an approach to tackle two challenges in model-based testing: the
traceability to functional requirements and the automatic derivation of test cases that
represent typical behavior. Our approach is based on the assumption that functional
requirements describe typical sequences of behavior. The requirements sequences can
be mapped to sequences in a system behavior model and can be used for automatic
test generation. In this paper, we choose UML sequence diagrams to describe require-
ments behavior and UML state machines to describe the complete system behavior.
We present the approach, new coverage criteria, the prototype implementation ConSe-
quence, and first experiences using an ATM case study.

1 Introduction

Tests compare a system under test (SUT) to a specification. In model-based testing (MBT),
this specification is a model. Model-based testing techniques have been investigated for
several years [Bin99, BJK05, UL06]. MBT is a promising technique with several advan-
tages over traditional testing such as requirements formalization, which can lead to early
detection of inconsistencies, the automation of test design, which usually implies a signif-
icant decrease of test design costs, the reduced test maintenance costs, and the objective
application of coverage criteria on the model level.

There are, however, still several open issues. One of the most important ones is the trace-
ability of requirements in behavioral test models. An intuitive approach to allow for trace-
ability is to annotate model elements with references to requirements [UL06, page 131].
Putting these information on requirements and system behavior in one model suffers from
two draw-backs: The model becomes overloaded and the integration of requirements in the
test model has to be done manually. Instead, we propose to use separate models for require-
ments and system behavior and to link them automatically during test generation. In this
paper, we focus on sequence diagrams of the Unified Modeling Language (UML) [Obj09]
as representations of functional behavior defined by requirements and on UML state ma-
chines as the representation of the system behavior. One sequence diagram can be mapped
to several transition sequences of a state machine. These transition sequences have differ-
ent contexts defined by the current variable assignments, the start state, and the hitherto
executed path. The identification and selection of these contexts is a major testing issue.



Mostly, coverage criteria drive the automatic test generation in MBT. We are, however,
aware of only one coverage criterion based on requirements, which is called All-Require-
ments [UL06] and requires only one test for each requirement. In this paper, we present
an approach to concatenate transition sequences of requirements for automatic test gener-
ation. We drive test generation by newly defined requirements-based coverage criteria.

Our paper is structured as follows. In Section 2, we present the related work. We present
the approach in Section 3, corresponding coverage criteria in Section 4, a prototype in
Section 5, and a case study in Section 6. In Section 7, we conclude the paper, discuss the
threats to validity, and present the intended future work.

2 Related Work

Testing is the primary means to detect failures of a SUT. Extensive work has been done in
this area [Bin99, BJK05, UL06]. There are several approaches to integrate requirements
into test generation from state machines. In [UL06, page 131], the authors propose to
reference requirements from single model elements - the requirements are covered if the
referencing model elements are. The tool Conformiq Designer [Con] allows to attach the
keyword requirements to single transitions to reference requirements. In contrast, we as-
sume that requirements are not represented as single model elements, but as interaction
sequences. The Microsoft SpecExplorer [Mic10] allows for defining slices of a model
for test generation that can also contain references to requirements. In contrast to our
approach, however, SpecExplorer does not allow for automatically combining such slices
based on corresponding coverage criteria. Furthermore, our approach is based on the def-
inition and satisfaction of test goals [Wei10], which allows for combining test generation
with other test generation tools on the test goal level [FSW08].

Many coverage criteria that are usually applied in MBT are focused on the structure of
state machines. Coverage criteria for requirements in MBT are very rare. We are only
aware of very fundamental criteria like All-Requirements [UL06], which is defined to be
satisfied if all model elements that reference requirements have been covered. In con-
trast, we propose coverage criteria that are aimed at the concatenation of manually defined
interaction sequences for requirements to drive automatic test generation.

State machines and sequence diagrams have been used for automatic test generation: For
instance, Abdurazik and Offutt [OA99] generate test cases from state machines. Nebut et
al. [NFTJ03] derive test cases from contracts such as use cases and sequence diagrams.
In contrast to that, we focus on combining both diagrams to generate test cases. It is
straight-forward that sequence diagrams can describe single transition sequences of a state
machine. Bertolino et al. [BMM05] combine both diagrams to derive “reasonably” com-
plete test models to achieve early results for partially modeled systems. Sokenou [Sok06]
and Nagy [Nag04] showed furthermore that the state machine’s start states to execute
sequence diagrams can be very important. We extend these approaches by identifying
transition sequences instead of start states that are matching to sequence diagrams. This
paper is an extension of our work presented in [SW09] and can be understood as a test



counterpart of sequence-based specification as presented in [PP03]. In addition to this
work, we defined coverage criteria for these model combinations, present the prototype
implementation ConSequence, and report on first experiences in a case study.

There are different approaches to automatic test generation from state machines. These
approaches comprise the use of model checkers [GH99], constraint solvers [AS05], or
guided path search [Wei]. All of these approaches are able to generate arbitrary transition
sequences. The issue with these transitions sequences is that they seldom represent typical
user interaction. In contrast to that, our test generation approach is focused on mapping
manually defined functional requirements to transition sequences and on combining these
transition sequences to longer ones. As a result, we are able to create complex test cases
that consist of typical user interaction sequences. In conformance to some of the men-
tioned approaches, we apply the constraint solver Choco [The09] to check the validity of
transition sequences and generate concrete test cases.

3 Approach

As mentioned above, a fundamental issue in MBT is the tracing from model elements to
requirements. Interaction sequences to describe requirements can be executed in several
contexts. We think that approaches that comprise these information in just one model
would lead to an overloaded model. For this reason, we focus on separate models for
requirements and system behavior.
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Figure 1: Meta model for mapping relations of requirements and transition sequences.

First, we describe a meta model to express relations of requirements (Requirement) and
transition sequences (TransitionSeq) depicted in Fig. 1: Each requirement can be mapped
to transition sequences (in different contexts). If the transition sequences of different re-
quirements overlap each other, then the corresponding requirements are also overlapping.
The three tasks of our approach are described in the following. A more detailed description
is presented in [WS10a].

Mapping. The task of the mapping is to find the contexts of the requirements in the sys-
tem model, i.e. to map each requirement to transition sequences in the system model. State
machine transitions are triggered by incoming events. Thus, only the incoming messages
for the object described by the state machine are extracted in order from the sequence
diagram and mapped to transition sequences that are triggered by the same sequence of
events (identified by events’ names and contexts). A transition sequence ts is a sequence



of state changes, i.e., transitions tx from a state machine, e.g., for which the target state of
tx−1 is the source state of tx.

Overlap Identification. For describing overlapping transition sequences, we define the
following terms for all transition sequences ts1 and ts2: The start state of any ts1 is the
source state of the first transition in ts1. The end state of any ts1 is the target state of the
last transition in ts1. TS1 is a prefix/postfix of ts2 iff ts2 starts/ends with the sequence of
transitions defined in ts1 and optionally contains subsequent/preceding transitions. The
sequence ts1 is part of ts2 iff the transitions in ts1 occur in ts2 at any place in the same
order, i.e. ts2 consists of the concatenation of a prefix of ts2, ts1, and a postfix of ts2.

Based on these definitions, we define that two transition sequences overlap iff a) the start
state of one transition sequence is equal to the end state of the other, b) there is a non-
empty prefix of one transition sequence that is equal to a non-empty post-fix of the other,
or c) one transition sequence is part of the other. The matching transitions that imply the
overlap are called the overlap. All mapped transition sequences are related to each other
if they overlap. The corresponding requirements are also considered overlapping if the
mapped transition sequences do. Overlapping transition sequences and requirements are
represented in the meta model (see Fig. 1). Transition instances can directly overlap - the
corresponding association between requirements is derived from this association.

Concatenation and Test Generation. Based on the overlap relations between pairs of
transition sequences, we can create an overlap graph covering all mapped transition se-
quences. Two overlapping transition sequences are concatenated by creating a new se-
quence that first contains all transitions of the preceding transition sequence and then all
transitions of the subsequent transition sequence without using the overlap of both tran-
sition sequences twice. Concatenating non-overlapping transition sequences is done via
finding a path on the overlap graph from one transition sequence to the other and concate-
nating all contained overlapping transition sequences. We are aware that the success of
the presented approach depends on the quality of the given requirements. For instance,
parts of the state machine may be not covered by requirements and, consequently, pairs of
non-overlapping transition sequences cannot be concatenated using the overlap graph. In
such cases, concatenation has to be done by applying other techniques, e.g. shortest path.

Test generation based on concatenating transition sequences consists of several steps: 1)
Concatenating all required transition sequences in the desired order. 2) Concatenating the
resulting transition sequence with the outgoing transition of the initial node and a transition
sequence that starts at the target state of the initial state’s outgoing transition. The resulting
transition sequence is a connected path of the state machine that starts at the initial state
and describes a possible system behavior that covers the desired transition sequences and
requirements, respectively. 3) Validating the resulting path, i.e. it has to be checked that all
constraints regarding guard conditions and effects on the contained transitions are valid.



4 Coverage Criteria

In this section, we describe coverage criteria for our approach of driving test generation
based on requirements integration and concatenation.

All-Requirements is satisfied if for each requirement, at least one of the mapped transition
sequences is covered by a test case.

All-Sequences is satisfied if for each requirement, all mapped transition sequences have
been covered by test cases at least once.

All-Requirements-Pairs is satisfied if for each pair of requirements, at least one pair of
the mapped transition sequences is covered in the order of the requirements.

All-Sequences-Pairs is satisfied if for each pair of requirements, all corresponding transi-
tion sequence pairs are covered in the order of the requirements.

All-Sequences-Twice is satisfied if for each requirement, all mapped transition sequences
have been covered by test cases at least twice.

The subsumption hierarchy for the presented coverage criteria is shown in Fig. 2. The cov-
erage criterion All-Sequence-Pairs subsumes All-Sequence-Twice by definition. Likewise,
All-Sequence-Twice subsumes All-Sequences and All-Requirements-Pairs subsumes All-
Requirements. Since All-Requirements only has to cover one mapped transition sequence
but All-Sequences has to cover all of them, All-Sequences subsumes All-Requirements.
The same holds for All-Requirements-Pairs and All-Sequence-Pairs.

All-Requirements

All-Sequences

All-Sequence-Pairs

All-Requirements-Pairs
All-Sequence-Twice

Figure 2: Requirements-based subsumption hierarchy.

5 Prototype Implementation

In this section, we describe the prototype implementation ConSequence [WS10b], which
derived its name by the approach of concatenating transition sequences instead of single
transitions. ConSequence is a Java-based Eclipse-plugin that can read EMF-based model
descriptions defined by the Eclipse UML plugins and OCL conditions.



The state machine, the sequence diagrams that should be used for test generation, the
coverage criteria to satisfy, the output file, and the test generator to use can be selected.
Coverage criteria are transformed into test goals in ConSequence. For each yet unsatisfied
test goal, a test case is generated. Unsatisfied test goals are reported. Finally, redundant
test cases are removed from the test suite, i.e. test cases for which all test goals are covered
by test cases that were created after them. For generating test cases, the tool relies on con-
catenating transition sequences and computing valid input-output data with the constraint
solver Choco [The09]. The supported output formats of ConSequence are JUnit 3.8 and
plain text. As a test oracle, we use state invariants that are derived from the state machine.

Waiting for 
Money Removal

2:ec_removed / ec_trials = trials@pre

3:t(5sec) / ec_trials=trials@pre and ec_collected

Waiting for 
Amount

EC Validation

AC Validation

Withdraw 
Cancelation

Amount Check

Idle

Waiting for AC

Display 
Account 

Statement

Selection

16:ac_not_ok [trials<3]

15:enter_ac / 
trials = trials@pre+1

17:ac_ok 
[own_customer] / 

trials=0

18:selection_account_statement

19:selection_withdrawal

20:ac_ok 
[foreign_customer] 

/ trials=0

EC Ejected

5:ac_not_ok 
[trials >= 3] 

/ ec_collected

21:enter_amount

13:amount_withdrawn

6:ec_invalid

7:withdrawal_canceled

8:money_removed9:t(5sec)  
[foreign_customer]

10:amount_too_high [foreign_customer]
11:amount_not_withdrawn

12:atm_load_too_low

14:ec_ok

4:ec_inserted / 
trials= 

ec_trials@pre
1:cancel

26:t(5sec) [own_customer]

Figure 3: System behavior of the ATM.

6 Case Study

In this section, we describe the case study for ConSequence based on models describing
the behavior of an automated teller machine (ATM). For the ATM, one state machine
describes the behavior of the system and 25 sequence diagrams describe single interaction
sequences. The state machine is shown in Fig. 3.

In the following, we describe our experiments to determine the impact of the defined cov-
erage criteria. For our case study, we manually created a SUT implementation of the ATM.
For each test suite generated for a certain coverage criterion, we run mutation analysis with



Jumble [UTC+07] on this SUT implementation. In mutation analysis, faulty versions of
the SUT are created by injecting single faults. Each faulty version is called a mutant. If
this mutant is detected by a test suite, the mutant is said to be killed. The ratio of killed
to all mutants is the mutation score. The coupling effect [DLS78] states that most of the
more complex faults are also covered by the simple ones [Off89, Off92].

First, we investigate the effects of the test suites generated with ConSequence. Afterwards,
we also evaluate the effects of structure-based coverage criteria with corresponding test
suites generated by ParTeG [Wei]. Finally, we will compare both kinds and evaluate the
effects of combining both test suites.

Requirements-based Coverage. In this section, we analyze the mutation score for the
test suites generated for the presented five requirements-based coverage criteria. Table 1
shows the test suite size measured as the number of test cases, the number of function calls
and the mutation score of the mutation analysis. As expected, All-Requirements performs
worst of all coverage criteria and All-Sequences performs better than All-Requirements
without much effort overhead. All-Requirements-Pairs and All-Sequence-Pairs perform
even better than All-Sequences. Their execution costs, however, increase dramatically:
more than 300 test cases with more than 5000 function calls for All-Requirements-Pairs
and All-Sequence-Pairs calls compared to just 23 test cases with only 159 function calls
for All-Sequences! This effort increase was expected: The number of test goals for any of
these two coverage criteria rises quadratically compared to the number of given require-
ments. These results were our motivation to consider coverage criteria with lower effort
like All-Sequences-Twice that reach a high mutation score at considerable costs.

Coverage Criterion Number of Test Cases Number of Function Calls Mutation Score
All-Requirements 19 165 69/87

All-Sequences 23 159 72/87
All-Requirements-Pairs 317 5411 73/87

All-Sequence-Pairs 369 6277 73/87
All-Sequence-Twice 23 440 73/87

Table 1: Results of mutation analysis for tests generated by ConSequence.

Structure-based Coverage. In this section, we apply ParTeG on the provided state ma-
chine to create test suites that satisfy structural coverage criteria [UL06]. We chose the
coverage criteria All-States, All-Transitions, Decision Coverage, MC/DC [CM94], and
Multiple Condition Coverage (MCC). Since the here presented test model contains no
complex guard conditions, the results for Decision Coverage, MC/DC, and MCC are the
same for this example (although they differ usually, see e.g. [WS08]). In the presented
statistics, we just name MCC. Table 2 shows the results.

As expected, All-States performs worst of all coverage criteria. All-Transitions detects
a fair amount of mutants with a low number of test cases. The three coverage criteria
Decision Coverage, MC/DC, and MCC detected 72 mutants but used only 12 test cases.
Compared to All-Sequences, this is the same mutation score for half of the test cases.



Coverage Criterion Number of Test Cases Number of Function Calls Mutation Score
All-States 3 15 39/87

All-Transitions 11 69 72/87
MCC 12 76 72/87

Table 2: Results of mutation analysis for tests generated by ParTeG.

Comparison and Combination. In this section, we compare the results of the test suites
generated by ConSequence and ParTeG. We are aware that this comparison strongly de-
pends on the number and quality of the given requirements. Nevertheless, for this case
study we can draw first conclusions: The obvious statement is that requirements-based
coverage criteria can be able to reach a higher mutation score and structural-based cover-
age criteria can achieve still good mutation scores with less effort. The next result is that
there are benefits of applying both kinds of coverage criteria. The results are shown in
Table 3.

Coverage Criterion Number of Test Cases Number of Function Calls Mutation Score
MCC + All-Sequences 35 235 74/87

MCC + All-Sequence-Pairs 381 6353 75/87
MCC + All-Sequence-Twice 35 516 75/87

Table 3: Results of mutation analysis for combined test suites.

The mutants detected by both approaches do not match completely. As a result, the com-
bination of test suite generated by the two mentioned approaches result in even stronger
test suites: For instance, combining MCC and All-Sequence-Twice detects 75 mutants
with only 35 test cases. Given the mutation scores of the single test suites, we consider
this improvement substantial. Even MCC and All-Sequences with the same number of
test cases but half the number of function calls of MCC and All-Sequence-Twice performs
better than the single test suites. As described in [FSW08], the combination of both test
generation approaches at the test goal level can even lead to smaller test suites.

7 Conclusion, Discussion, and Future Work

In this paper, we presented a new approach to traceability in model-based testing. We
presented the concatenation of requirements and defined corresponding coverage criteria.
We described the developed tool ConSequence and presented the results of a case study.
The application of our approach can result in stronger test suites than the ones generated
to satisfy structural coverage criteria. As a major result, the combination of requirements-
based and structural-based coverage criteria results in even stronger test suites.

There are several points to discuss. For instance, the quality of the presented test genera-
tion approach strongly depends on the quality of the given requirements. One way to deal
with this problem is conducting more case studies. Furthermore, since our approach is
focused on satisfying single test goals, the presented test generation approach can also be
combined with other structural coverage criteria at the test goal level. This is conform to



our major result that the combination of structure-based and requirements-based coverage
criteria is beneficial. As a result, the quality of our generated tests would be always at least
as good as the quality defined by existing structure-based coverage criteria. Furthermore,
we only used the message sequences defined in the sequence diagrams to map to transition
sequences. Since there may be additional information given in the sequence diagrams, it
might be worth considering to include them. Finally, we put the major focus on transition
sequences as the context of requirements. There are other context information like, e.g. the
attribute values, which should be included into test generation.

This leads to the intended future work. First, we plan to integrate further information about
requirements context into test generation. Our second aim is to define and evaluate further
coverage criteria. Third, we plan to use the described connection of sequence diagrams
and state machines for integration testing: The sequence diagrams already describe inte-
gration of several components. They can also be used to combine state machines of the
interacting objects. Our fourth aim is to extend the implementation ConSequence so that
it can also deal with parts of the state machine that are not covered by requirements, e.g.
by combining ConSequence and ParTeG on test goal level. Finally, we aim at extending
our approach to also include requirements about forbidden behavior.
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