
Combining Sequences and State Machines to
Build Complex Test Cases

Dehla Sokenou1 and Stephan Weißleder2

1 GEBIT Solutions GmbH, Koenigsallee 75 b, 14193 Berlin
dehla.sokenou@gebit.de

2 Humboldt-Universität zu Berlin, Rudower Chaussee 25, 12489 Berlin
weissled@informatik.hu-berlin.de

Abstract. Model-based testing is an important testing technology. The
UML is a very popular modeling language. In this paper, we present a
technique to utilize UML state machines in order to concatenate UML
sequence diagrams and sketch corresponding coverage criteria. We show
the relevance of our work by presenting an industrial case study in which
sequence diagrams were combined with a state machine.

Key words: Unified Modeling Language, State Machines, Sequence Di-
agrams, Test Model Combination

1 Motivation

Functional testing is an important testing technique that is based on comparing
the system under test (SUT) to specifications. Model-based testing is often used
for functional testing. The test models are used as specifications. They provide
information about input stimuli as well as the necessary oracle to deduce if a
test case detects a fault.

Functional testing compares SUT and test models. Thus, SUT and test mod-
els must not be automatically derived from another and the creation of test mod-
els is often a manual task. In model-driven engineering, a requirement use case is
often supplemented with a sequence diagram. Each sequence diagram represents
a few possible behaviors of the SUT. Thus, there are only a few test cases for
each use case. This supports traceability from requirements to test cases. For
such reasons, sequence diagrams are very popular to model test cases. One issue
about sequence diagrams, however, is that they just consist of a sequence of
interactions without any notion of state. Thus, it is impossible to concatenate
sequence diagrams, i.e. execute the described test cases consecutively.

State machines are a more complex means to model behavior than sequence
diagrams. In contrast to a sequence diagram, a state machine is used to describe
a large set of behavior traces: From most non-trivial state machines, a possibly
infinite set of test cases can be derived. In such cases, coverage criteria are used
as a stop criterion for test generation. Since the described behavior can be quite
complex and the generated test cases are also determined by the used coverage

2 Dehla Sokenou and Stephan Weißleder

criteria, the application of state machines makes traceability hard. However,
state machines are based on state information, which can be utilized, e.g. to
derive test oracle information based on state invariants.

In this paper, we propose the combination of state machines and sequence
diagrams. The contribution is a technique to concatenate sequence diagrams by
retracing their behavior in state machines and concatenating the corresponding
transition sequences. For that, all possibly traversable transition sequences of the
state machine matching to the information contained in the sequence diagrams
have to be identified. The advantages are, e.g., the creation of longer sequences
based on existing ones, the detection of faults that are undetected by the tests
derived from simple sequence diagrams, or the satisfaction of stronger coverage
criteria on the state machine. Additionally, this approach provides test oracles
in the form of state constraints to test cases derived from sequence diagrams.

We use an automated teller machine (ATM) from an industrial case study to
clarify our approach. In this case study, sequence diagrams are used to describe
the behavior of the ATM for one customer including, e.g. checks for the correct
PIN. The sequence diagrams were used to derive a state machine that contains
the behavior of all sequences. Furthermore, the state machine was extended
manually and contains additional loops that, e.g. allow the repeated usage of the
ATM for several customers. While the sequence diagrams describe the interaction
of several objects, the state machine only describes the behavior of the ATM.
Behavior of other systems like AR will not be considered in this paper.

This paper is structured as follows. The next section contains the related
work. Section 3 comprises the proposed combination of state machine and se-
quence diagrams. The case study is presented in Section 4. The final section
concludes and provides future prospects.

2 Related Work

There has been a lot of work about model-based testing much of which is con-
densed in [11]. Especially, state machines and sequence diagrams of the Unified
Modeling Language (UML) [4] are often used to model test cases. As one ex-
ample, Nebut et al. [3] derive test cases from contracts such as use cases and
sequence diagrams. As another example, Abdurazik and Offutt provide an ap-
proach for automatic test generation from state machines [5]. In contrast to that,
we aim at the combined use of both diagrams to generate test suites.

There has also been work about the combination of sequence diagrams and
state machines. From the very beginning, it was clear that sequence diagrams can
describe single transition sequences of a state machine. Bertolino et al. [1] com-
bine both diagrams to derive “reasonably” complete test models to achieve early
results for partially modeled systems. Sokenou [9] and Nagy [2] showed further-
more, that the state machine’s start states to execute sequence diagrams can be
very important. We extend these approaches by identifying transition sequences
instead of start states that are matching to sequence diagrams. Additionally, we
combine several sequence diagrams by matching start and end sequences of the

Combining Sequences and State Machines to Build Complex Test Cases 3

corresponding transition sequences to build new and more complex sequences,
and we propose coverage criteria based on sequence diagrams.

3 Combination of State Machine and Sequence Diagram

Sequence diagrams are often used to describe test cases manually (see e.g. UML
Testing Profile and TTCN-3 [7]) where a message to a given lifeline is consid-
ered as test input to the corresponding object under test. Due to missing state
information, however, the sequences cannot be concatenated. State machines de-
scribe a possibly infinite set of test cases but the proper selection of concrete test
cases is a complex task. In this section, we describe how to concatenate sequence
diagrams by retracing them as transition sequences in state machines and how
to take advantage of this concatenation. For that, we denote several states as
follows: The initial state is the initial state of the state machine as defined in the
UML specification [4, page 521]. Other states are used to refer to the start or
the end of an interaction sequence described in a sequence diagram: A start state
of a sequence is a state in the state machine that allows to start the execution
of the sequence from. The corresponding target state of this execution is called
end state.

3.1 Advantages of Concatenating Sequence Diagrams

Before describing the concatenation of sequence diagrams, we motivate this ap-
proach by listing some of the resulting advantages. First, the set of possible start
states of a sequence seq1 is in many cases disjunct to the set of the state ma-
chine’s initial states. In order to execute seq1, we have to find a sequence seq2

from one of the state machine’s initial states to one of seq1’s start states s. We
call such a seq2 an ”initialization sequence“ for seq1 if seq2’s set of start states
contains at least one of the state machine’s initial states and s is the end state of
one of seq2’s transitions. Since there are often several sequences whose possible
start states overlap with the state machine’s initial states, all these sequences
can be used as initialization sequences for other sequences. So, the first advan-
tage of concatenating sequence diagrams is to reuse existing sequence diagrams
as initialization sequences for sequence diagrams that cannot be executed from
an initial state.

Second, the concatenation of sequence diagrams results in longer and possibly
fewer test cases. In some environments like embedded systems, the initialization
of test cases results in higher costs than the test execution. Thus, the combination
of many test cases into a few long ones can save expenses.

Third, as we will show in our case study, the concatenation of sequence dia-
grams can result in the detection of faults that are undetected by the execution
of single sequence diagrams. Concatenated sequence diagrams can be used to test
the concatenated behavior of several sequences as well as their repeatability.

Finally, the presented possibility of sequence diagram concatenation intro-
duces new means of quality measurement for executing sequence diagrams. Until

4 Dehla Sokenou and Stephan Weißleder

now, the sole execution of a sequence diagram can be measured, e.g. with the
coverage criterion All-paths sequence diagram coverage [11, page 122]. Further-
more, the identification of matching (initialization) transition sequences allows
the sequential execution of sequence diagrams. We would call the corresponding
coverage criterion All-Context-Sequences. For the concatenation of sequence di-
agrams, we can introduce further coverage criteria that are similar to existing
transition-based coverage criteria: For instance, All-Sequence-Pairs (the concate-
nation of all pairs of sequence diagrams), All-n-Sequences (the concatenation of
all n-tuples of sequence diagrams), or All-Sequence-Paths (all sequence diagram
concatenations of any length). These new coverage criteria might be useful for
evaluating the test suites derived from a state machine and a set of sequence
diagrams. Their use, however, has to be evaluated in case studies.

3.2 Formal Definitions

There are many different kinds of state machine definitions (cf. [8, 10]). In this
paper, we stick to the definitions of state machines as presented in the UML
2.1 specification [4]. We sketch basic elements of this definition. A state machine
sm ∈ SM is a set of regions Reg and pseudo states PS. Each region contains a set
of vertices V ert (i.e. states and pseudo states) and a set of transitions Trans.
Transitions trns ∈ Trans connect vertices – they reference a corresponding
source and target vertex (trns.source, trns.target). Each transition contains
instances of trigger Tsm, guard G, and effect E. The set of all transitions in
state machine Transsm is derived as union of transition sets from all regions.
Based on this, we denote TransSeq as the set of all transition sequences of a
state machine. Each transition trns ∈ Trans has a label t[g]/[e] where t ∈ Tsm

is the trigger, g ∈ G is the guard trns.guard of trns, and e ∈ E is the effect
trns.effect of trns. Both elements g and e are of type OCL. We only consider
deterministic state machines to have an unambiguous mapping from triggers to
transitions.

A sequence diagram is defined as a 5-tupel SD = (L,M,O,Λsd, Tsd). The
set L represents the life lines of all objects in the given sequence. The relation
M = L × Λsd × L includes all messages sent between life lines. Each message
m ∈ M has a label t(para) ∈ Λsd where t ∈ Tsd is the trigger of the message and
para represents all parameters of t. O = M×M defines the ordering of messages.
A message m1 is called before a message m2 in a sequence iff (m1,m2) ∈ O. In
our scenario, O is total, i.e. there are no asynchronous messages.

Triggers are method calls or events send to an object. A sequence dia-
gram’s set of triggers Tl ⊂ Tsd for incoming messages of a lifeline l is a sub-
set of all triggers Tsm of the corresponding state machine sm ∈ SM if sm
is associated to l, i.e. describes the behavior of the object of l. A message
m ∈ M with the label t(para) can be executed in a given state s ∈ V ert iff
∃trans ∈ Trans : trans.source = s and trans.guard is satisfied by the current
attribute and parameter value assignment resulting from the already executed
messages. Our definition conforms to UML protocol state machines and considers
only explicitly modeled transitions.

Combining Sequences and State Machines to Build Complex Test Cases 5

3.3 Concatenate Sequence Diagrams

This section contains the descriptions of how to concatenate sequence diagrams
by concatenating corresponding transition sequences of a state machine. For
that, we have to derive state machine transition sequences from sequence dia-
grams. We introduce the function findTransitionSequences : SD × SM → P(TS)
that produces transition sequences for each combination of sequence diagram and
state machine. Afterwards, we show how to concatenate the transition sequences.

In [9], we described a method to derive a set of possible start states for the
execution of behavior defined in sequence diagrams. In contrast, this paper is
focused on deriving and comparing transition sequences instead of single states.
Thus, we present an algorithm to derive transition sequences from state ma-
chines that reflect the described behavior of sequence diagrams. Fig. 1 shows the
algorithm of the corresponding function findTransitionSequences. Due to reasons
of conciseness, the pseudocode leaves out some aspects of transition matching
such as transition guards, post conditions or state invariants. Nevertheless, we
are aware that tracing the current system state (i.e. system attribute value as-
signment) is important to determine important aspects of transition matching,
e.g. the satisfaction of transition guards.

findTransitionSequences (sequenceDiagram, stateMachine) {

sequences = empty set; // return value

msg = first message of sequenceDiagram;

startStates = all states of stateMachine with outgoing transitions

triggered by msg;

for each(s in startStates) {

tmpS = s;

transitionSequence = empty sequence;

for(i = 0; i < number of messages of sequenceDiagram; ++i) {

msg = sequenceDiagram.messages[i];

if(tmpS has outgoing transition t triggered by msg) {

tmpS = target state of t;

add t to transitionSequence;

}

else {

transitionSequence = empty sequence;

break;

}

}

if(transitionSequence is not empty) {

add transitionSequence to sequences;

}

}

return sequences;

}

Fig. 1. Algorithm for detecting all transition sequences for a sequence diagram.

6 Dehla Sokenou and Stephan Weißleder

For each sequence diagram, we retraced its described behavior as a sequence
of transitions in the state machine. In this section, we use these transition se-
quences to combine several sequence diagrams: For two transition sequences
ts1 , ts2 ∈ TS with ts1 is assumed to be executed before ts2, we consider three
cases: 1) ts1 does not include a transition whose target state is the start state of
ts2. In this case, both transitions cannot be concatenated. 2) The target state
of the last transition in ts1 is equal to the source state of the first transition in
ts2 and 3) an end sequence ts1B of ts1 is equal to a start sequence ts2A of ts2
(see Fig. 2). For the second and the third case, ts2 can be executed after ts1
(without executing the overlapping transitions in ts1B/ts2A twice).

ts1

ts2

ts1A ts1B / ts2A ts2B

Fig. 2. Overlapping transition sequences.

4 Case Study

In this section, we present a scenario in which sequence diagrams were derived
from requirements of an automated teller machine (ATM) and applied to create
test cases for the ATM. Furthermore, these sequence diagrams are composed to
a state machine. Originally, test cases were only derived directly from require-
ments, not from models. In the following, we show how to use our approach to
generate more complex test cases for such scenarios.

The state machine is shown in Fig. 3. Transitions of state machine are num-
bered so it is easier to describe transition sequences in the following. A possible
behavior of a customer that enters his PIN (4 digits) and withdraws money is
described for instance by the following transition sequence: (4, 14, 15, 15, 15, 15,
24, 23, 20, 19, 13, 8, 2) (cf. Fig. 3). In the figure, AC stands for Account Check
and AR stands for Authorization System. Note that the state machine describes
just the behavior of the ATM. Thus, some messages of the sequence diagrams
are not included in the state machine.

All sequence diagrams are directly derived from requirements use cases. Ex-
ample sequences are shown in Fig. 4, 5 and 6. Sequence 1 is an initializing
sequence as it can be executed in the initial state of the state machine, state
Idle. The message ec inserted can only be executed in state Idle, thus the al-
gorithm starts with transition 4:ec inserted in the state machine. Following the
algorithm in Fig. 1, transition sequences for Sequence 1 are: transseqs1.1 = (4,
14, 15, 15, 15, 15, 24, 23) and transseqs1.2 = (4, 14, 15, 15, 15, 15, 24, 21).
The last transitions of both sequences depend on the values of the attributes

Combining Sequences and State Machines to Build Complex Test Cases 7

Waiting for
Money Removal

2:ec_removed / ec_trials = trials@pre

3:t(5sec) / ec_trials=trials@pre and ec_collected

Waiting for
Amount

EC Validation

AC Validation

Withdraw
Cancelation

Amount Check

Idle

Error EC Count

Waiting for AC

Display
Account

Statement

Selection

15:enter_digit
[ac_count<4]
/ ac_count=

ac_count@pre+1
17:ok [ac_count<4]

16:ok 18:enter_digit [ac_count>=4]

25:ac_not_ok [trials<3]

24:ok [ac_count=4] /
trials = trials@pre+1

23:ac_ok
[own_customer] /

trials=0

22:selection_account_statement

20:selection_withdrawal

21:ac_ok
[foreign_customer]

/ trials=0

EC Ejected

5:ac_not_ok

19:enter_amount

13:amount_withdrawn

6:ec_invalid

7:withdrawal_canceled

8:money_removed

9:t(5sec)
[foreign_customer]

10:amount_too_high [foreign_customer]
11:amount_not_withdrawn

12:atm_load_too_low

14:ec_ok /
ac_count=0

4:ec_inserted /
trials=

ec_trials@pre
1:cancel

26:t(5sec) [own_customer]

Fig. 3. State Machine of ATM

own customer and foreign customer. For Sequence 2, only one transition se-
quence can be found: transseqs2 = (20, 19, 13, 8). There is also only one transi-
tion sequence for Sequence 3: transseqs3 = (8, 2).

The target state of the last transition of transseqs1.1 is the same as the source
state of first transition of transseqs2. Thus, both are concatenated to build a
new scenario and a resulting new transition sequence transseqs1.1,s2 = (4, 14,
15, 15, 15, 15, 24, 23, 20, 19, 13, 8). As the transition sequence transseqs2 ends
with the same transition as transseqs3, also Sequence 3 can be concatenated
to the others. One of the resulting transition sequences is transseqs1.1,s2,s3 =
(4, 14, 15, 15, 15, 15, 24, 23, 20, 19, 13, 8, 2). Corresponding to the transition
sequences, we concatenated the sequence diagrams and created longer test cases.
Fig. 7 shows the resulting sequence diagram.

As we expected, several faults can be detected by longer sequence diagrams.
For instance, the combined sequence is the only sequence in the case study that

8 Dehla Sokenou and Stephan Weißleder

ec_inserted

: Customer : ATM : AR

ec_ok

request_pin

enter_digit

enter_digit

enter_digit

enter_digit

ok
check_ac

ac_ok

request_selection

Fig. 4. Sequence Diagram 1

selection_withdrawal

: Customer : ATM atmBank : BANK

request_amount

enter_amount

money_removed

withdraw_amount

amount_withdrawn

eject_money

Fig. 5. Sequence Diagram 2

money_removed

: Customer : ATM

eject_ec

ec_removed

Fig. 6. Sequence Diagram 3

Combining Sequences and State Machines to Build Complex Test Cases 9

ec_inserted

: Customer : ATM : AR

ec_ok

request_pin

enter_digit

enter_digit

enter_digit

enter_digit

ok
check_ac

ac_ok

request_selection

atmBank : BANK

selection_withdrawal

request_amount

enter_amount

withdraw_amount

amount_withdrawn

eject_money

money_removed

eject_ec

ec_removed

Fig. 7. Concatenated Sequence Diagram

contains a scenario from inserting EC card until money and EC removal. Fur-
thermore, we found a sequence that was not covered by the original sequence
diagrams but can be derived by combining sequence diagrams: The original se-
quence diagrams only describe that a customer enters a wrong PIN three times
without removing the EC card in between. However, there is no sequence diagram
for a customer that three times inserts an EC card, enters the PIN incorrectly
just once, and cancels the operation afterwards. With the repetition of several
complete scenarios for interactions of customer and ATM, such scenarios can be
covered. We found these improvements by manual inspection. It would be inter-
esting to automate this approach to identify and evaluate further advantages.

5 Conclusion and Outlook

In this paper, we presented an approach to combine sequence diagrams by retrac-
ing their described behavior as transition sequences in a state machine. We pre-
sented a concrete algorithm, listed several advantages of this approach, e.g. men-
tioned possible resulting coverage criteria, and showed the applicability of our
approach for an industrial case study.

10 Dehla Sokenou and Stephan Weißleder

Sequence diagrams are used to describe typical scenarios. They often do not
define conditions for the initial state of execution and describe only parts of
a scenario. Thus, the presented concatenation of sequence diagrams is a good
way to create more complex test cases while avoiding to initialize each sequence
separately before its execution. This concatenation can be automated and, thus,
no additional manual effort is necessary. Additionally, the proposed combination
of two diagrams allows to define new coverage criteria based on both diagrams.

There are some points left to discuss. First, combining sequences can result
in a lot of new test cases. More complex test cases can reduce test effort but
increase the effort to find errors. To reduce complexity, the number of these test
cases might be reduced using the proposed coverage criteria. Second, we have
to define limitations on the algorithm. It seems to make no sense to combine
sequence diagrams that overlap in all transitions except one or to generate only
one combined test case from all sequences. What is the maximum overlap that
should be taken in consideration? What is the minimum number of test cases?

In the future, we plan to implement the presented approach, e.g. as an exten-
sion of the tool ParTeG [6]. We want to use the tool to automatically create test
cases for concatenated sequence diagrams. Here, we will take also the proposed
new coverage criteria on sequence diagrams into account.

References

1. A. Bertolino, E. Marchetti, and H. Muccini. Introducing a Reasonably Complete
and Coherent Approach for Model-based Testing. Electr. Notes Theor. Comput.
Sci., 116:85–97, 2005.

2. R. Nagy. Bedeutung von Ausgangszuständen beim Testen von objektorientierter
Software. In CoMaTech ’04, Trnava, Slowakei, 2004.

3. C. Nebut, F. Fleurey, Y. L. Traon, and J.-M. Jézéquel. Requirements by Contracts
allow Automated System Testing. In ISSRE’03, pages 17–21, Denver, CO, USA,
2003.

4. Object Management Group. Unified Modeling Language (UML), version 2.1, 2007.
5. J. Offutt and A. Abdurazik. Generating tests from UML specifications. In

R. France and B. Rumpe, editors, UML’99 - The Unified Modeling Language. Be-
yond the Standard., volume 1723 of LNCS, Fort Collins, CO, USA, 1999. Springer.

6. S. Weißleder. ParTeG (Partition Test Generator). http://parteg.sourceforge.net.
7. I. Schieferdecker and J. Grabowski. The Graphical Format of TTCN-3 in the

context of MSC and UML. In Telecommunications and beyond: The BroaderAppli-
cability of SDL and MSC (SAM’2002), volume 2599 of LNCS, Rosslyn, VA, USA,
2003. Springer.

8. D. Seifert, S. Helke, and T. Santen. Test Case Generation for UML Statecharts. In
Perspectives of System Informatics, volume 2890 of LNCS, Novosibirsk, Russland,
2003. Springer.

9. D. Sokenou. Generating Test Sequences from UML Sequence Diagrams and State
Diagrams. In MOTES 2006, Dresden, Germany, 2006.

10. D. Sokenou. UML-basierter Klassen- und Integrationstest objektorientierter Pro-
gramme (german). PhD thesis, Technische Universität Berlin, Germany, 2006.

11. M. Utting and B. Legeard. Practical Model-Based Testing: A Tools Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2006.

