
ParTeG - A Model-Based Testing Tool

Stephan Weißleder Dehla Sokenou
Humboldt-Universität zu Berlin, Institut für Informatik GEBIT Solutions

Rudower Chaussee 25, 12489 Berlin, Germany Koenigsallee 75b, 14193 Berlin, Germany

weissled@informatik.hu-berlin.de dehla.sokenou@gebit.de

Abstract

Model-based testing is the comparison of a system un-
der test to reference specifications in form of models.
Tool support for model-based testing is of utter im-
portance. In this paper, we present the model-based
testing tool ParTeG, compare it with other model-
based testing tools in the same area, and show future
extensions.

1 Overview

ParTeG [6] is a model-based testing tool that was ini-
tially developed to implement new algorithms into a
prototype as a proof of concept. By now, ParTeG is
available as a free Eclipse plug-in, hosted by Source-
forge. ParTeG is based on the Eclipse UML 2.0 plug-
ins. It automatically generates test cases from UML
state machines and class diagrams that are annotated
with OCL expressions. ParTeG supports test suite
generation for JUnit 3.8, JUnit 4.3, Java Mutation
Analysis, and CppUnit 1.12.

The tool has been presented before – the TAV
workshop is used for further discussions about the
tool’s approach. A detailed introduction to ParTeG’s
features are presented in the following sections.

1.1 Interprete OCL Constraints
ParTeG supports a subset of the Object Constraint
Language (OCL), excluding some of the expressions
for collections. In contrast to other testing tools, like
Smartesting Test Designer, ParTeG avoids assump-
tions if an OCL expression semantics is unclear. For
example, the expression x = y as postcondition of an
operation f() may be interpreted as:

1. After the execution of f(), the value of y has
been assigned to x.

2. After the execution of f(), the value of x has
been assigned to y.

3. After the execution of f(), both values x and y
have changed but now they are equal.

ParTeG supports all three kinds, thus it can handle
situations where the concrete value of a variable is
unknown. To force the first interpretation, the ex-
pression should be transformed into the unambiguous
form x = y@pre.

All variables are classified as fixed or changeable in
the current expression: Input values, parameters, con-
stants, and attributes with @pre are fixed (they can-
not be changed) – variables marked without @pre are
changeable in postconditions. This general interpre-
tation of variables and the correspondingly general ex-
pression transformation rules allow even to deal with
inequations in postconditions.

1.2 Combine Coverage Criteria
Coverage criteria are a widely accepted means of test
suite quality measurement. They can be compared
using subsumption relations. The most important
feature of ParTeG is the ability to satisfy combined
coverage criteria: For instance, control-flow-based
coverage criteria (e.g. MC/DC) can be combined
with boundary-based coverage criteria (e.g. Multi-
Dimensional). From each category (control-flow-
based or boundary-based), one coverage criterion can
be chosen for the combination. At the moment, the
following coverage criteria are supported: All-States,
All-Transitions, Decision Coverage, masking MC/DC,
and Multiple Condition Coverage as well as random
input value selection and different variants of Multi-
Dimensional: MD(0) with partition boundary values,
and MD(1) with values at absolute range boundaries
and with random values from input partitions.

Test cases are generated starting with a control-
flow-based respectively transition-based coverage cri-
terion. This coverage criterion is converted into a set
of model-specific test goals. For instance, All-States
is converted into test goals, each of which is referenc-
ing one state of the state machine. The test goals
are used to generate transition sequences from the
initial state to the referenced state. For each tran-
sition sequence, all influencing guard conditions and
operations’ pre-/postconditions are logged – they are
transformed and used for concrete input parameter se-
lection corresponding to the selected boundary-based
coverage criterion. The transition sequences and the
corresponding concrete input parameters are used to
create test cases.

During automatic test generation, a test case for a
test goal can cover other test goals. ParTeG supports
monitoring of test goals, i.e. all already covered test
goals are excluded from further test case generations.

1



(a) Modeling (b) Preferences

Figure 1: ParTeG User Interface

1.3 Mutation Analysis
Mutation analysis is a wide-spread approach to mea-
sure the fault detection capability of a test suite. This
approach is based on fault injection in a correct imple-
mentation. All faulty implementations are called mu-
tants. Mutants that are semantically different from
the original implementation can be detected (killed)
by a test suite. The assumption is that the more mu-
tants are detected by a test suite, the better is this
test suite’s general fault detection capability [1].

ParTeG supports mutation analysis in two ways.
First, it can use a mutation factory provided by the
tester that delivers a new mutant for each test execu-
tion. These mutants can be fed into the factory man-
ually, automatically, or by any other arbitrary means.
Second, ParTeG can generate JUnit 3.8 code which
can be used by the mutation tool Jumble [5].

2 Comparison with Commercial Tools

Tool Test Cases Detected Mutants

Rhapsody ATG 4 10/24
LTD 4 10/24

ParTeG 5 24/24

Table 1: Comparison with Commercial Tools

In previous case studies, we compared ParTeG to
Rhapsody ATG [2] and Leirios (now: Smartesting)
Test Designer (LTD) [4]. As quality criterion for test
suites, we used mutation analysis. For one of our ex-
amples, a freight elevator, we generated 24 mutants.
Table 1 shows the results for this relative simple ex-
ample where only ParTeG is able to detect all mu-
tants. We found that the support of combined cov-
erage criteria has a wide influence on the quality of
the generated test suite. For instance, LTD supports
only the satisfaction of All-Transitions where ParTeG
is able to satisfy a set of combined coverage criteria.
The comparison with other tools is based on past ver-
sions of these tools. To validate the former results,
a new comparison with current versions is necessary.

For this purpose, we collected additional case studies
for test generation with ParTeG, among others two
industrial case studies.

3 Conclusion and Outlook

ParTeG offers a complete test cycle from the creation
of test models (using the UML plugins or the editor
TopCased [3]) to test suite generation for combined
coverage criteria and subsequent test execution. At
the current state, ParTeG supports automatic cre-
ation of input partitions even for multiple interacting
input parameters, several different search strategies,
test goal prioritization, test model adaptations, and
derivation of state machines along inheritance rela-
tions between classes.

We plan to extend the implemented approach of
ParTeG in the future. For example test generation
can be supported for other models like a combination
of the already integrated models (class diagrams, state
machines) with interaction diagrams. A short com-
parison of ParTeG to commercial tools showed that
ParTeG is able to detect more mutants than the oth-
ers for our examples. We created a set of further test
models from academia and industry and plan further
comparisons to commercial tools.

References
[1] James H. Andrews, Lionel C. Briand, and Yvan Labiche. Is

mutation an appropriate tool for testing experiments? In
ICSE ’05: Proceedings of the 27th international conference
on Software engineering, pages 402–411, New York, NY,
USA, 2005. ACM.

[2] IBM (Telelogic). Rhapsody Automated Test Generation.
http://www.telelogic.com/products/rhapsody.

[3] Open Source. TopCased UML Editor 3.0.
http://www.topcased.org/, 2009.

[4] SmarTesting. LTD/UML. http://www.smartesting.com.

[5] Mark Utting, Len Trigg, John G. Cleary, Archmage Irvine,
and Tin Pavlinic. Jumble. http://jumble.sourceforge.net/,
2007.

[6] Stephan Weißleder. ParTeG (Partition Test Generator).
http://parteg.sourceforge.net.


