Learning by Doing: Using an Extendible
Language To Teach Object-Oriented Concepts

Dehla Sokenou' and Stephan Herrmann?
1 GEBIT Solutions GmbH, Cicerostrafie 37, D-10709 Berlin,
EMail: dehla.sokenou@gebit.de
2 Technische Universitat Berlin, Fakultit IV - Elektrotechnik und Informatik,
Institut fiir Softwaretechnik und Theoretische Informatik, Fachgebiet Softwaretechnik,
Sekr. FR 5-6, Franklinstr. 28/29, D-10587 Berlin,
EMail: stephan@cs.tu-berlin.de

Abstract. The paper describes our experiences in teaching object-orien-
ted concepts independently from a given programming language in the
context of a course for advanced students. Instead of either teaching
only theoretical concepts or using a selected object-oriented program-
ming language, we combine both views. A simple extendible language,
Lua [Lual, is used to explain object-oriented concepts and their differ-
ent specificities. The exercise for our students is to implement a simple
object-oriented interpreter based on Lua. We have seen that implement-
ing object-oriented concepts themselves facilitates understanding object-
oriented concepts and learning new object-oriented languages. Further-
more, it has been shown that our approach is suitable for teaching new
programming paradigms like aspect-oriented or role-based programming,
too.

1 DMotivation

When teaching object-oriented concepts, there are two main approaches. Firstly,
concepts can be described without explicitly referring to any programming lan-
guage. This approach is independent from the different flavours of object-oriented
concepts found in different programming languages. In most cases, this kind
of courses is very theoretical in nature but gives a good base for students to
learn new object-oriented languages. Secondly, teaching can be focussed on the
concepts of one specific object-oriented language. Here, one object-oriented pro-
gramming language stands for a special interpretion of object-oriented program-
ming. Advantage is the practical approach that is based on only one program-
ming language for either explanation of concepts and implementation of exer-
cises.

A typical example for different flavours of object-oriented programming is
inheritance. When regarding programming languages like Java, C++, Eiffel,
Smalltalk, CLOS or Self, each of them gives a special meaning to inheritance.
Java allows only single inheritance and introduces the interface concept. C++
has multiple inheritance like Eiffel but a completely different technical realization

in terms of name clashes. In Eiffel, method signatures can be redefined, not only
method bodies. In Smalltalk, classes are special objects, so we have metaclass
inheritance. CLOS allows to redefine a method by adding program code before or
after the super-class method, a concept related to aspect-oriented programming.
Self is a language without classes using object-based inheritance instead.

In our course, we teach all these different flavours. Concepts are presented
using examples from different object-oriented languages. But instead of using
a simple object-oriented example as introductory programming exercise for our
students, they first have to implement their own object-oriented interpreter based
on Lua. The newly created interpreted programming language is called LOS (Lua
Object System). After that, the students have to use their LOS implementation
for other exercises, e.g. implementing an object-oriented system using design
patterns.

The course is being taught in this form since 1999, which seems to be a long
time in software engineering. To our own suprise, our approach is still up-to-date,
because it can easily adapt to new developments in the field of programming
languages. We have seen that also concepts beyond object-oriented programming
like aspects and roles can be taught in the same way.

2 The Interpreter Kit

In this section, we give a short introduction to the Lua interpreter and its ex-
tendibility and explain how Lua can help to implement — and therefore under-
stand — object-oriented concepts.

Lua is a simple imperative language with a small set of functionality. Some
features facilitate the development of an object-oriented extension of Lua. En-
tities in Lua are polymorphic and dynamically typed. A special syntax allows
to pass a hidden target reference to a function and to refer to this object with
the special name self inside the function body. This syntax in a way anticipates
object-oriented programming, but Lua is not an object-oriented language. It has
neither classes nor inheritance nor any other object-oriented features.

The way to implement an extension of the normal Lua interpreter behaviour
is the metatable mechanism, a powerful reflective language concept. We first
explain this concept based on a short example.

Consider a situation where a function call is made on a table® (e.g. a(2),
where a is a table with a = {value=3}. The plain Lua interpreter generates an
error method because tables cannot be handled like functions. But Lua allows
to define a function which will be called instead of the normal error behaviour.
With two lines of code, we can define how to handle function calls on tables:

1 function mult(x, y) return x.value * y end
2 setmetatable(a, {__call=mult})

3 Lua tables are associative arrays.

Line 1 defines a function mult that multiplies two number values. In line 2, the
function mult is defined as the new standard behaviour of a function call on
table a, thus a(2) will be a legal expression evaluating to 6.

2

file.lua a(2) B
function mult (..)... TN

setmetatable (a, {__call=mult})

Y 7 S

Lua "call” etatable>=--+ mult(..) S

interpreter ak» o

a: table =——> error() 8

Fig. 1. Lua metatable mechanism

The situation is illustrated in Figure 1. Instead of calling the built-in error
function, the user-defined function mult is called.

1 function findField (object, field)

2 if field == "parent" then -- avoid loops

3 return nil

4 end

5 local p = object.parent -- access parent object

6 if type(p) == "table" then -- check if parent is a table

7 return p[field] -- (this may call findField again)
8 else

9 return nil

10 end

11 end

12

13 ObjectMetatable = {} -- metatable

14 ObjectMetatable.__index = findField -- bind index access to find field

Fig. 2. Prototype-based language

As said before, Lua tables are associative arrays. Any value can be assigned
to any key. Even a function can be a value. We use Lua tables to define objects.
Attributes and functions are stored in a Lua table and define the object’s features
and behaviour. To define new objects, we can use other objects as prototypes.
The prototype object becomes a parent of the new object. We define a metatable
(ObjectMetatable in lines 13-14, see Figure 2), which gives special behaviour
to all objects as follows: The attributes and functions of an object are found in
the object itself or the object’s parents (lines 1-11). Not shown in the example is

the creation of new objects based on a prototype object. The main duty of the
method to create new objects is to set the metatable to the created objects (see
also Figure 3, line 18). This is the first step to our own object-oriented language
LOS and implements a prototype-based language.

When extending the simple prototype-based language with classes, we can
reuse parts of the implementation of the prototype-based language. The class-
based variant presented here consists of typed objects and attributes. A complete
listing of the class-based LOS language is given in Figure 3.

The function Class (lines 1-11) creates a new class with the given attributes
and methods. Methods of the parent class were copied to the new class. The func-
tion new (lines 15-20) creates a new object and assigns the metatable Object-
Metatable. The function findField in lines 22-35 (including function find-
Method) is similar to the one of the prototype-based language. It distinguishes
between attributes that are found in the object itself and methods that are found
in the object’s class. If a value is assigned to an object, a dynamic type check is
performed by the functions setField and isTypeOK in lines 37-56.

A short program using the class-based language implemented in Figure 3 is
shown in Figure 4. A class PERSON and a subclass ARTIST and some objects of
these types are defined.

The syntax presented in this example is a compromise between two conflicting
requirements. First, the Lua parser cannot be modified, so any LOS program
must use legal Lua syntax. On the other hand, the syntax should reflect the
concepts to be taught in a convenient way, in order to support object-oriented
thinking. Lua supports some syntactic sugar, which to a certain degree allows to
write LOS programs such that they actually look like object-oriented programs.

The given examples of LOS variants show that classes can be special types
of objects. Prototype-based and class-based languages have many similarities
like finding features along the inheritance hierarchy. For students, the imple-
mentation of both examples is a way to understand the differences but also the
commonalities in different kinds of inheritance.

The lesson learned is that different object-oriented concepts can co-exist in
the same language and can have the same underlying technique but different
characteristics.

The language LOS is used to implement normal object-oriented programming
exercises. It is a great success for students to see that their own implementation
of an object-oriented language can be used like any other programming language.

3 Experiences With LOS

As we have seen at the end of our course, students are able to differentiate
between general object-oriented concepts and their technical realizations in dif-
ferent programming languages. Learning and using another object-oriented pro-
gramming language than LOS is not difficult for them, like other exercises in

fun

end
0bj

fun

end

fun

ction Class (name, parent) -- define a new class
local new = {_name=name}
if parent then

table.foreach (parent, function (i,m)

if type(m) == "function" then -- find all functions in parent
new[i] = m -- and copy them to new
end
end)

end
_G[name] = new
ectMetatable = {} -- metatable for objects
ction new(class) -- define new objects
local newobject = {_attributes={1}}
rawset (newobject, "_class", class)

setmetatable(newobject, ObjectMetatable)
return newobject

ction findField(object, field) -- find field (attribute or method)
local attributes = rawget(object, "_attributes")
local fieldValue = attributes[field]
if fieldValue "= nil then
return fieldValue
end
local class = rawget(object, "_class")
local method = findMethod(class, field)
return method

end
function findMethod(class, method) -- find method
return rawget(class, method)
end
function setField(object, fieldName, value) -- sets attributes (type-safe)

end

local fieldType = object._class.Attributes[fieldName]
if fieldType == nil then

error("Assigning undeclared field "..fieldName)
end
if not isTypeOK(fieldType, value) then

error("Assigning incompatible value to field "..fieldName)
end

object._attributes[fieldName] = value

function isTypeOK(fieldType, value) -- type check

if fieldType == type(value) then
return true

end
if getmetatable(value) == ObjectMetatable then
return value._class == fieldType

end

return false
end
ObjectMetatable.__index = findField -- bind new behaviour for objects
ObjectMetatable.__newindex = setField

Fig. 3. Class-based language

1 Class(’PERSON’) -- class PERSON

2 PERSON.Attributes = {

3 name = String,

4 age = Number,

5 }

6 function PERSON:print()

7 io.write("Name: " .. self.name .. ", Age: " .. self.age)

8 end

9

10 Class(’ARTIST’, PERSON) -- class ARTIST

11 ARTIST.Attributes = {

12 pseudonym = String

13}

14 function ARTIST:printExtended()

15 self:print()

16 io.write(" Pseudonym: " .. self.pseudonym)

17 end

18

19 personl = new(PERSON); personl.name = "Alice"; personl.age = 24
20 person2 = new(PERSON); person2.name = "Bob"; person2.age = 30
21 person3 = new(ARTIST); person3.name = "Fred"; person3.age = 18
22 person3.pseudonym = "Wallace"
23 personl:print(); person2:print(); person3:printExtended()

Fig. 4. Example LOS program

this course — and subsequent classes — have shown. In these exercises, languages
like Java, Eiffel or Object Teams are used.

We use Lua in our course since 1999. Students knowledge has changed over
time. In 1999, most of the students were not familiar with object-oriented con-
cepts when starting our course. Only a few of them knew Java or C++. To
date, most of our students are experienced in a popular language like Java. But
focussed on Java, they are surprised how many different flavours exist in object-
oriented programming. Normally, more students apply for this course than we
can accommodate. Feedback from our students support the impression of a suc-
cessfull teaching approach for object-oriented concepts. Most of the students use
their own LOS implementation for further exercises instead of our sample imple-
mentation. This experience of first implementing a programming language and
then writing programs in this new language is fascinating for students. It allows
students to better understand the evolving nature of programming languages,
rather than taking today’s languages as irrevocable laws.

Since 2001, we have extended our approach to other concepts beyond object-
oriented programming. In 2001, the LOS variant implemented by our students
included a role concept. An aspect-oriented LOS variant was implemented in
2004 — we had a LOS variant with before and after method inheritance already

in 2000.

The flexibility of Lua is also used in our research projects. Often, new lan-
guage features are explored by implementing a prototype using Lua (see for
example [Her00]). As a result of these research activities, the language family
Object Teams has been developed — firstly as an interpreted prototype in Lua
[HMO1] and lastly as a compiler resulting in ObjectTeams/Java [Obj].

This close relation between teaching and research is another advantage of our
course. Many of our students decide to write their diploma thesis in the field of
object-oriented languages and beyond or work in one of our research projects in
our group.

4 Conclusion

Our experience has shown that object-oriented concepts are better understood
by students if they implement these concepts themselves. In a fast changing
discipline like software engineering, students must be capable to quickly learn
new concepts and programming languages. In our course, different flavours of
object-oriented programming and beyond are taught as well as their technical
realizations. This means flexibility and helps students to understand new pro-
gramming concepts and paradigms and learn new programming languages in
their future work.

The implementation of object-oriented concepts in an own interpreter helps
to see the relationships between different concepts. Students see how combining
existing concepts and the mechanisms behind them allows to build new pro-
gramming languages. Often, combinations of techniques and concepts are not
randomly chosen but relate to each other — for example, the interface concept in
Java is motivated by the single inheritance concept.

An exercise that asks for the implementation of a type system in LOS is
given after the basic implementation exercise. This helps students to distingish
between the execution of programs and the constraints over the set of correct
programs.

Lua is a suitable language for implementing an interpreter for one’s own
object-oriented language. Lua is easy to understand and to extend. There are of
course concepts that cannot easily be realized by using the interpreter approach,
but usually require the static analysis performed by a compiler. Examples are
genericity and overloading.

Other candidates for implementing the exercises are Ruby [Rub] and Scheme
[Dyb03].

Ruby is already an object-oriented language but extendible like Lua. Because
of the object-oriented nature of Ruby, concepts are already implemented that are
not present in plain Lua. In one of our research projects, a Lua implementation
of a new programming language was followed by a prototype implementation
in Ruby [Vei02] that includes a lot more features than the Lua prototype and

additionally opens for access to are large number of program libraries. For our
course, we consider important that the language used for the exercises is not
by itself an object-oriented language. For that reason, we don’t use Ruby in the
context of the course.

We know of other teaching groups using Scheme instead of Lua for implement-
ing an object-oriented language. Scheme is extendible, too, but has a functional
programming background. We find that Lua as an imperative language is closer
related to main-stream object-oriented programming. The advantage of this is
twofold: First, students find it easier to implement the language extension in
an imperative style. Secondly, the resulting language feels quite similar to stan-
dard imperative object-oriented languages. In the end, students are just proud
to implement programs using the language they have just developed.

References

[Dyb03] R. Kent Dybvig. The Scheme Programming Language: 3rd Edition. MIT
Press, 2003.

[Her00] Stephan Herrmann. Lua/P — A Repository Language For Flexible Software
Engineering Environments. In 2nd International Symposium on Construct-
ing Software Engineering Tools (CoSET), 22th International Conference on
Software Engineering (ICSE), Limerick, Ireland, 2000.

[HMO1] Stephan Herrmann and Mira Mezini. Combining Composition Styles in the
Evolvable Language LAC. In Workshop on Advanced Separation of Concerns
in Software Engineering, 23th International Conference on Software Engineer-
ing (ICSE), Toronto, Canada, 2001.

[Lua] Lua Homepage. http://www.lua.org/.

[Obj] Object Teams Homepage. http://www.objectteams.org.

[Rub] Ruby Homepage. http://www.ruby-lang.org/.

[Vei02] Matthias Veit. Evaluierung modularer Softwareentwicklung mit Object Teams
am Beispiel eines Projektmanagementsystems (german). Master’s thesis, Tech-
nische Universitdat Berlin, Germany, 2002.

