
Cypress everywhere

Only one tool for all test levels?

Dehla Sokenou



WPS – Workplace Solutions GmbH

https://fg-tav.gi.de/

https://dpsq.de/

https://www.wps.de/

Test and Quality Manager

Software Architect

Spokesperson for the GI specialist group TAV



WPS – Workplace Solutions GmbH

Do you also know this?

Many 

tools

UI 

components 

not accessed

Dealing 

with time
Tests fails –

but why?

Flaky 

tests Long test 

runs New web 

framework = 

new test 

framework



WPS – Workplace Solutions GmbH

Ask a backend developer…

5

E2E tests?

Integration tests?

Unit tests?

xUnit!

xUnit!

xUnit!?



WPS – Workplace Solutions GmbH

Ask a frontend developer…

6

E2E tests?

Integration tests?

Unit tests?
Jasmine/Karma?

Cypress?

Selenium?

Enzyme?

Jest?

Jasmine/Karma?

Enzyme?

Jest?

Vitest?

Playwright?

Vitest?



WPS – Workplace Solutions GmbH

Couldn’t we make it better?



WPS – Workplace Solutions GmbH

Maybe like this…?

8

E2E tests?

Integration tests?

Unit tests?

Cypress!

Cypress!

Cypress!



WPS – Workplace Solutions GmbH

E2E-Tests?

Integrationstest?

Unit-Tests?

Cypress!

Cypress!

Cypress!

Unit-Tests in frontend…?

9

Unit tests?

UI component 

tests! Tests for 

business logic 

(no UI)!



WPS – Workplace Solutions GmbH

Cypress – a brief history

2014/15 Launched as an opponent to 

Selenium and other capture & replay 

tools, open source

2017 Version 1.0 → E2E Testing

2021 Version 7.0 → Component Testing 

(alpha)

2022 Version 10.0 → Component Testing 

(beta), gradual expansion of 

framework support 

(React, Vue, Angular, ...)



WPS – Workplace Solutions GmbH

Target platforms

Cypress E2E is suitable for any type of web application

In particular, it also supports modern single-page apps, where 

several other tools are weak

Cypress Component Testing must be provided specifically for 

the web framework

But then: uniform technology, regardless of whether you have 

an Angular, Vue, React, ... Project

Jest also supports various frameworks, but only unit, 

integration, component tests, no E2E



WPS – Workplace Solutions GmbH

How does it work?

Tests are implemented → at first glance a disadvantage, e.g. 

in comparison to Capture & Replay, BDD or keyword-driven 

testing tools

But: who actually uses the testing tool?

Same technique can be reused at all testing levels

(at least in frontend)

Same technique can be reused for all common web 

frameworks (at least in frontend)



WPS – Workplace Solutions GmbH

And (how) does that solve

our problems?



WPS – Workplace Solutions GmbH

Special features of Cypress – in general

Some characteristics of Cypress that make it special

“Time Travel” (a kind of flip book)

Automatic screenshots / DOMs in case of errors 

→ better error analysis

Clock

Mocks (spies, stubs)

Automatic waiting

Typing at (fast) user speed



WPS – Workplace Solutions GmbH

Special features of Cypress – E2E tests

Some characteristics of Cypress that make it special

Very stable, only few flaky tests

Very fast

Cross-browser testing (in real browser)

Runs with the application in one environment and 

allows control from within

Mocking of network traffic also in E2E tests



WPS – Workplace Solutions GmbH

Special features of Cypress – Component and integration tests

Some characteristics of Cypress that make it special

Very stable, only few flaky tests, especially when having 

a lot of user interaction

You can see what is being tested (like Karma, in contrast 

to Jest, for example)

It's still fast (like Jest, unlike Karma, for example)

Wide framework support (like Jest)



WPS – Workplace Solutions GmbH

Code Insights



WPS – Workplace Solutions GmbH

Demo



WPS – Workplace Solutions GmbH

Migration of existing test suites

Which tests are worth it?

We primarily migrated the flaky / long-running tests

All further tests directly in Cypress

How much effort is that?

Teaser: 90% pure translation, 10% brainpower

Visual input, therefore faster when writing new tests

What is the best way to proceed?

Separate the tests by naming them (what has already been converted, what still needs to 

be converted?)

What is the current status of Cypress (e.g., in terms of API stability, false negatives)?



WPS – Workplace Solutions GmbH

Migration of existing test suites: Pitfalls? 

Cypress UI and tests 

start up slowly

Support in IDEs is 

sometimes insufficient 

(including debugging)

But:

Different way of 

working

Cypress UI in watch 

mode

Auto restart of the 

tests

The play button in 

the IDE is rarely 

missed, even if it is 

usually there now

Faster start up with Vite

Some E2E test 

scenarios not 

supported

Module Mocking

Failing tests in 

Cypress UI



WPS – Workplace Solutions GmbH

Evaluation



WPS – Workplace Solutions GmbH

Is it now a tool for all test levels (in the frontend)?

Unit Tests Component Tests

Integration Tests

E2E Tests



WPS – Workplace Solutions GmbH

What to consider…

When you decide on a tool, the following questions 

are also important:

Sustainability (is the project alive?)

Hard breaks between versions requiring a lot of 

adjustment?

Limitations of the open source version compared 

to the commercial version?

Not open source: Cypress Cloud with Flaky test 

management, parallelization and auto-rerun/auto-

cancel 

(but there are workarounds)



WPS – Workplace Solutions GmbH

Our conclusion

Who could/should use Cypress Component Testing (and who shouldn’t)?

Yes, if projects with different frontend technologies are used

Yes, if the tests are very flaky

Maybe if you already use Cypress as an E2E tool

Maybe if tests are difficult to write without visual feedback

Maybe not if there are other UIs besides the web ones

No, if automated tests are currently running smoothly



WPS – Workplace Solutions GmbH

Our conclusion

What does Cypress show what a testing tool must be able to do? 

→ Helpful for evaluations of other testing tools

Visual feedback, time travel and screenshots are helpful for error 

analysis

Tests should run in real browsers

Otherwise, you won't find browser-dependent errors

Otherwise, some tests will be slow or flaky because of the 

emulation

Robustness of the tests is essential

Support from common third-party libraries makes sense and makes porting 

tests easier

E.g. testing library



WPS – Workplace Solutions GmbH



WPS – Workplace Solutions GmbH

Appendix



WPS – Workplace Solutions GmbH

Links

Test Solutions for Web frontend development

Cypress: https://www.cypress.io/

Cypress Dashboard (Open Source Variant): https://sorry-cypress.dev/

Selenium: https://www.selenium.dev/

Playwright: https://playwright.dev/

WebDriverIO: https://webdriver.io/

Jest: https://jestjs.io/

Vitest: https://vitest.dev

Karma / Jasmine: https://angular.io/guide/testing

Testing Library: https://testing-library.com/

https://www.cypress.io/
https://sorry-cypress.dev/
https://www.selenium.dev/
https://playwright.dev/
https://webdriver.io/
https://jestjs.io/
https://vitest.dev/
https://angular.io/guide/testing
https://testing-library.com/


WPS – Workplace Solutions GmbH

Image / photo credits (in the order of appearance)

Images / photos:

https://www.cypress.io/

https://commons.wikimedia.org/wiki/File:Strider_Linkage_Robot_Climbing.gif (CC BY-SA 4.0)

https://commons.wikimedia.org/wiki/File:Zeichen_101_-_Gefahrstelle,_StVO_1970.svg (Public Domain)

https://commons.wikimedia.org/wiki/File:Software_Developer_at_work_03.jpg (CC BY-SA 4.0)

https://commons.wikimedia.org/wiki/File:Software_developer_at_work_02.jpg (CC BY-SA 4.0)

https://commons.wikimedia.org/wiki/File:Zeichen_206_-_Halt!_Vorfahrt_gew%C3%A4hren!_StVO_1970.svg (Public Domain)

https://commons.wikimedia.org/wiki/File:Pyramides_et_le_Sphinx_MET_DP113869.jpg (CC0 1.0)

https://commons.wikimedia.org/wiki/File:JavaScript_UI_widgets_library_for_building_desktop_and_mobile_web_apps.png (CC BY-SA 4.0)

https://commons.wikimedia.org/wiki/File:Victorinox_climber.jpg (CC BY-SA 4.0)

https://commons.wikimedia.org/wiki/File:Linnet_kineograph_1886.jpg (Public Domain)

https://commons.wikimedia.org/wiki/File:Horse_Daisy_jumping_a_hurdle,_saddled_with_a_rider_(rbm-QP301M8-1887-639).jpg (Public Domain)

https://commons.wikimedia.org/wiki/File:Stabil_Modell_751_klein.jpg (CC BY-SA 4.0)

https://jestjs.io/

https://commons.wikimedia.org/wiki/File:Hurdle_(PSF).png (Public Domain)

https://commons.wikimedia.org/wiki/File:Jack-in-the-box.jpg (Public Domain)

https://commons.wikimedia.org/wiki/File:Confused_man.jpg (CC BY-SA 2.5)

https://commons.wikimedia.org/wiki/File:BlackMarble_2016_rotating_globe_at_night_transparent.gif (Public Domain)

Licenses:

CC0 1,0: https://creativecommons.org/publicdomain/zero/1.0/deed.en

CC BY-SA 2.5: https://creativecommons.org/licenses/by-sa/2.5/deed.en

CC BY-SA 4.0: https://creativecommons.org/licenses/by-sa/4.0/deed.en

https://www.cypress.io/
https://commons.wikimedia.org/wiki/File:Strider_Linkage_Robot_Climbing.gif
https://commons.wikimedia.org/wiki/File:Zeichen_101_-_Gefahrstelle,_StVO_1970.svg
https://commons.wikimedia.org/wiki/File:Software_Developer_at_work_03.jpg
https://commons.wikimedia.org/wiki/File:Software_developer_at_work_02.jpg
https://commons.wikimedia.org/wiki/File:Zeichen_206_-_Halt!_Vorfahrt_gew%C3%A4hren!_StVO_1970.svg
https://commons.wikimedia.org/wiki/File:Pyramides_et_le_Sphinx_MET_DP113869.jpg
https://commons.wikimedia.org/wiki/File:JavaScript_UI_widgets_library_for_building_desktop_and_mobile_web_apps.png
https://commons.wikimedia.org/wiki/File:Victorinox_climber.jpg
https://commons.wikimedia.org/wiki/File:Linnet_kineograph_1886.jpg
https://commons.wikimedia.org/wiki/File:Horse_Daisy_jumping_a_hurdle,_saddled_with_a_rider_(rbm-QP301M8-1887-639).jpg
https://commons.wikimedia.org/wiki/File:Stabil_Modell_751_klein.jpg
https://jestjs.io/
https://commons.wikimedia.org/wiki/File:Hurdle_(PSF).png
https://commons.wikimedia.org/wiki/File:Jack-in-the-box.jpg
https://commons.wikimedia.org/wiki/File:Confused_man.jpg
https://commons.wikimedia.org/wiki/File:BlackMarble_2016_rotating_globe_at_night_transparent.gif
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/licenses/by-sa/2.5/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

	Folie 1: Cypress everywhere
	Folie 3
	Folie 4: Do you also know this?
	Folie 5: Ask a backend developer…
	Folie 6: Ask a frontend developer…
	Folie 7
	Folie 8: Maybe like this…?
	Folie 9: Unit-Tests in frontend…?
	Folie 10: Cypress – a brief history
	Folie 11: Target platforms
	Folie 12: How does it work?
	Folie 13
	Folie 14: Special features of Cypress – in general
	Folie 15: Special features of Cypress – E2E tests
	Folie 16: Special features of Cypress – Component and integration tests
	Folie 17
	Folie 19
	Folie 23: Migration of existing test suites
	Folie 25: Migration of existing test suites: Pitfalls? 
	Folie 27
	Folie 28: Is it now a tool for all test levels (in the frontend)?
	Folie 29: What to consider…
	Folie 30: Our conclusion
	Folie 31: Our conclusion
	Folie 32
	Folie 34
	Folie 35: Links
	Folie 36: Image / photo credits (in the order of appearance)

